Все справочники Предисловие
Глава 5
Асинхронные микромашины автоматических устройств
  1. Устройство и основные конструктивные типы асинхронных исполнительных двигателей
  2. Исполнительный двигатель с амплитудным управлением
  3. Исполнительный двигатель с фазовым управлением
  4. Исполнительный двигатель с амплитудно-фазовым управлением (конденсаторная схема)
  5. Быстродействие исполнительных двигателей и их сравнение при различных способах управления
  6. Асинхронный тахогенератор
  7. Устройство и принцип действия вращающихся трансформаторов
  8. Синусно-косинусный вращающийся трансформатор
  9. Линейный вращающийся трансформатор
  10. Вращающийся трансформатор-построитель
  11. Принцип действия системы синхронной связи и устройство сельсинов
  12. Трансформаторный режим работы однофазных сельсинов
  13. Индикаторный режим работы однофазных сельсинов
  14. Дифференциальные сельсины
  15. Магнесины
  16. Трехфазные сельсины
  17. Использование вращающихся трансформаторов в системе дистанционной передачи угла
Глава 6
Синхронные машины
  1. Назначение и принцип действия синхронной машины
  2. Устройство синхронной машины
  3. Особенности конструкции синхронных машин большой мощности
  4. Работа генератора при холостом ходе
  5. Работа генератора под нагрузкой
  6. Векторные диаграммы генератора
  7. Внешние и регулировочные характеристики генератора
  8. Определение индуктивных сопротивлений синхронной машины
  9. Параллельная работа синхронного генератора с сетью
  10. Режимы работы синхронного генератора при параллельной работе с сетью
  11. Мощность и электромагнитный момент синхронной машины
  12. Статическая устойчивость
  13. Синхронный двигатель
  14. Пуск синхронного двигателя
  15. Регулирование частоты вращения синхронных двигателей. Вентильный двигатель
  16. Синхронный компенсатор
  17. Понятие о переходных процессах в синхронных машинах
  18. Несимметричные режимы работы синхронных генераторов
  19. Особенности работы синхронного генератора на выпрямительную нагрузку
  20. Сверхпроводниковые синхронные генераторы
  21. Однофазная синхронная машина
Глава 9
Глава 10
Нагревание и режимы работы электрических машин
  1. Нагревание электрических машин
  2. Режимы нагрузки электрических машин
Заключение Список литературы

§ 5.11. ПРИНЦИП ДЕЙСТВИЯ СИСТЕМЫ СИНХРОННОЙ СВЯЗИ И УСТРОЙСТВО СЕЛЬСИНОВ

Принцип действия. Электрические машины синхронной связи служат для синхронного и синфазного поворота или вращения двух или нескольких осей, механически не связанных между собой. В простейшем случае синхронную связь осуществляют с помощью двух одинаковых, электрически соединенных между собой индукционных машин, называемых сельсинами (от слов selfsinchroniringсамосинхронизирующийся). Одну из этих машин, механически соединенную с ведущей осью, называют датчиком, а другую, соединенную с ведомой осью (непосредственно или с помощью промежуточного исполнительного двигателя), — приемником.

Система синхронной связи работает так, что при повороте ротора сельсина-датчика на какой-либо угол θд ротор сельсина-приемника поворачивается на такой же угол θп . Следовательно, система стремится ликвидировать рассогласование между положениями роторов датчика и приемника, которое характеризуется углом рассогласования θ = θд - θп , и в идеальном случае свести угол θ к нулю.

Системы синхронной связи подразделяют на два основных вида: синхронного поворота (передачи угла) и синхронного вращения (электрического вала).

Режимы работы. Различают два основных режима работы сельсинов: индикаторный и трансформаторный.

При индикаторном режиме ротор сельсина-приемника соединяют непосредственно с ведомой осью. Его применяют при малом значении тормозного момента на ведомой оси, обычно в тех случаях, когда на оси укреплена хорошо уравновешенная стрелка индикатора (отсюда название — индикаторный).

При трансформаторном режиме сигнал о наличии рассогласования между положениями роторов датчика и приемника подается через усилитель на исполнительный двигатель, который поворачивает ведомую ось и ротор сельсина-приемника, ликвидируя рассогласование. При этом режиме выходной сигнал приемника пропорционален синусу угла рассогласования, аналогично тому, как во вращающемся трансформаторе, поэтому такой режим работы сельсина получил название трансформаторного. Трансформаторный режим применяют в тех случаях, когда к ведомой оси приложен значительный тормозной момент, т. е. когда приходится поворачивать какой-либо механизм.

Устройство сельсинов. Сельсины имеют две обмотки: первичную, или обмотку возбуждения, и вторичную, или обмотку сихронизации. В зависимости от числа фаз обмотки возбуждения различают одно- и трехфазные сельсины; обмотку синхронизации в обоих типах сельсинов обычно выполняют по типу трехфазной.
Трехфазные сельсины имеют такую же конструкцию, как трехфазные асинхронные двигатели с контактными кольцами на роторе; их применяют только в системах электрического вала. В системах автоматики используют однофазные контактные и бесконтактные сельсины.

Принцип действия сельсина не зависит от места расположения каждой из обмоток. Однако чаще всего в сельсинах обмотку синхронизации размещают на статоре, а обмотку возбуждения — на роторе (для уменьшения количества контактных колец и повышения надежности работы).

Однофазные контактные сельсины аналогичны асинхронным машинам малой мощности. Они могут быть явнополюсными (индикаторные) и неявнополюсными (трансформаторные). В явнополюсных сельсинах однофазная обмотка возбуждения сосредоточенная; она расположена на явно выраженных полюсах ротора (рис. 5.31, а) или статора (рис. 5.31,б). В неявнополюсных сельсинах однофазная обмотка возбуждения распределенная (рис. 5.31, в); она расположена в полузакрытых пазах ротора (или статора). Обмотку синхронизации всегда

Рис. 5.31. Схемы магнитной системы однофазных контактных сельсинов: 1 — статор; 2 — обмотка синхронизации; 3 — ротор; 4— обмотка возбуждения

Рис. 5.32. Устройство контактного сельсина: 1 — статор; 2 — ротор; 3 — контактные кольца

выполняют распределенной и размещают в пазах соответственно статора или ротора; фазы ее соединяют по схеме Y. Для приближения формы кривой поля к синусоиде воздушный зазор в явнополюсных сельсинах выполняют неравномерным — увеличенным на краях полюсного наконечника. Для ослабления зубцовых гармонических делают скос пазов статора или ротора на одно зубцовое деление.

Сельсины выполняют обычно двухполюсными. Так как магнитное поле в сельсинах переменное, то статор и ротор собирают из изолированных листов электротехнической стали (рис. 5.32). Для увеличения надежности контакта и уменьшения его переходного сопротивления кольца и щетки, к которым подключают обмотку ротора, выполняют обычно из сплавов серебра. Число контактных колец и щеток зависит от места расположения обмоток: сельсины с обмоткой возбуждения на роторе имеют два контактных кольца; с обмоткой возбуждения на статоре — три контактных кольца. В некоторых типах сельсинов-приемников на явнополюсном роторе по поперечной оси размещают короткозамкнутую демпферную обмотку, обеспечивающую быстрое затухание собственных колебаний ротора при переходе его из одного положения в другое. При отсутствии электрического демпфера на валу ротора сельсина-приемника устанавливают механические демпферы (фрикционные, пружинные или жидкостные — ртутные).

Рис. 5.33. Электромагнитная           схема  бесконтактного
сельсина: 1 — тороиды; 2 — обмотка возбуждения; 3 — внешний магнитопровод; 4 — пакет статора; 5 — обмотка синхронизации;6 — пакеты ротора; 7 — промежуток из немагнитного материала

Большим недостатком контактных сельсинов является наличие скользящих контактов, переходное сопротивление которых может изменяться. Это снижает надежность работы синхронной связи и приводит к увеличению погрешностей. В настоящее время широко применяют явнополюсные и неявнополюсные бесконтактные сельсины, не имеющие скользящих контактов.

В явнополюсном бесконтактном сельсине (рис. 5.33) на статоре расположены трехфазная распределенная обмотка синхронизации, два боковых кольца (тороиды), две тороидальные катушки однофазной обмотки возбуждения и внешний: магнитопровод. Стальной пакет, в котором размещена обмотка синхронизации и тороиды собраны из листов, расположенных перпендикулярно оси вала, а внешний магнитопровод — из листов, расположенных параллельно оси вала. На роторе имеются два стальных пакета, разделенных немагнитным материалом (обычно сплавом алюминия). Пакеты ротора соб-раны из стальных листов, размещенных в плоскости, параллельной оси вала. Следовательно, во всех элементах магнитной системы плоскость листов параллельна направлению силовых магнитных линий. Тороидальные катушки обмотки возбуждения включают так, чтобы направление тока в них в любой момент времени было согласованным.

Магнитный поток, создаваемый обмоткой возбуждения, замыкается в каждом элементе магнитной системы сельсина по пути, показанному на рис. 5.33 стрелками. Из первого пакета ротора он проходит через небольшой воздушный зазор, а затем по статору переходит во второй пакет, охватывая проводники обмотки синхронизации. Непосредствен­ному переходу потока из одного пакета ротора в другой препятствует косой промежуток, заполненный немагнитным материалом. Из второго пакета ротора поток через тороиды и внешний магнитопровод переходит в первый. При повороте ротора изменяется положение оси потока относительно обмоток синхронизации, поэтому ЭДС, индуцируемая в фазах обмотки синхронизации, зависит от угла поворота ротора, так же как и в контактных сельсинах, вследствие чего принцип действия этих видов сельсинов одинаков. Устройство бесконтактного сельсина показано на рис. 5.34, а.

Недостатком бесконтактных сельсинов является худшее использование материалов, чем в контактных, из-за больших потоков рассеяния и увеличенного тока холостого хода. При одинаковом удельном синхронизирующем моменте масса бесконтактного сельсина примерно в 1,5 раза больше, чем контактного.

В системах синхронной связи, работающих при повышенной частоте (400—1000 Гц), применяют неявнополюсные бесконтактные сельсины с кольцевым трансформатором (рис. 5.34,б). В этих сельсинах обмотка синхронизации расположена в пазах статора, а обмотка возбуждения - в пазах или на явно выраженных полюсах ротора. Питание к обмотке возбуждения подается посредством кольцевого трансформатора, смонтированного в общем корпусе с сельсином.

Такой сельсин по своей конструкции подобен контактному сельсину, но вместо колец и щеток в нем применен кольцевой трансформатор. Первичная обмотка трансформатора расположена на статоре, вторичная - на роторе, а магнитопровод состоит из торцовых колец, собранных из листов электротехнической стали, и внешнего и внутреннего колец, выполненных из металлокерамики.

Рис. 5.34. Устройство бесконтактных сельсинов:
1 - корпус;   2   и   9 - тороиды;   3,  7 - обмотка   возбуждения;   4 - обмотка
синхронизации;   5 - немагнитный   промежуток;   6 - статор;   8-ротор;   10-
кольцевой трансформатор

Здесь располагается содержимое id "columnright"