Все справочники Предисловие
Глава 5
Асинхронные микромашины автоматических устройств
  1. Устройство и основные конструктивные типы асинхронных исполнительных двигателей
  2. Исполнительный двигатель с амплитудным управлением
  3. Исполнительный двигатель с фазовым управлением
  4. Исполнительный двигатель с амплитудно-фазовым управлением (конденсаторная схема)
  5. Быстродействие исполнительных двигателей и их сравнение при различных способах управления
  6. Асинхронный тахогенератор
  7. Устройство и принцип действия вращающихся трансформаторов
  8. Синусно-косинусный вращающийся трансформатор
  9. Линейный вращающийся трансформатор
  10. Вращающийся трансформатор-построитель
  11. Принцип действия системы синхронной связи и устройство сельсинов
  12. Трансформаторный режим работы однофазных сельсинов
  13. Индикаторный режим работы однофазных сельсинов
  14. Дифференциальные сельсины
  15. Магнесины
  16. Трехфазные сельсины
  17. Использование вращающихся трансформаторов в системе дистанционной передачи угла
Глава 6
Синхронные машины
  1. Назначение и принцип действия синхронной машины
  2. Устройство синхронной машины
  3. Особенности конструкции синхронных машин большой мощности
  4. Работа генератора при холостом ходе
  5. Работа генератора под нагрузкой
  6. Векторные диаграммы генератора
  7. Внешние и регулировочные характеристики генератора
  8. Определение индуктивных сопротивлений синхронной машины
  9. Параллельная работа синхронного генератора с сетью
  10. Режимы работы синхронного генератора при параллельной работе с сетью
  11. Мощность и электромагнитный момент синхронной машины
  12. Статическая устойчивость
  13. Синхронный двигатель
  14. Пуск синхронного двигателя
  15. Регулирование частоты вращения синхронных двигателей. Вентильный двигатель
  16. Синхронный компенсатор
  17. Понятие о переходных процессах в синхронных машинах
  18. Несимметричные режимы работы синхронных генераторов
  19. Особенности работы синхронного генератора на выпрямительную нагрузку
  20. Сверхпроводниковые синхронные генераторы
  21. Однофазная синхронная машина
Глава 9
Глава 10
Нагревание и режимы работы электрических машин
  1. Нагревание электрических машин
  2. Режимы нагрузки электрических машин
Заключение Список литературы

§ 6.7. ВНЕШНИЕ И РЕГУЛИРОВОЧНЫЕ ХАРАКТЕРИСТИКИ ГЕНЕРАТОРА

Внешние характеристики. Зависимости напряжения U от тока нагрузки Iа при неизменных токе возбуждения Iв , угле φ и частоте f1 (постоянной частоте вращения ротора п2 ) называют внешними характеристиками генератора. Их можно построить с помощью векторных диаграмм. Допустим, что при номинальной нагрузке Iа ном генератор имеет номинальное напряжение Uном , что достигается путем соответствующего выбора тока возбуждения. При уменьшении тока нагрузки до нуля напряжение генератора становится равным ЭДС холостого хода Е0. Следовательно, векторная диаграмма, построенная при номинальной нагрузке, сразу дает две точки внешней характеристики. Форма внешней характеристики зависит от характера нагрузки, т. е. от угла сдвига фаз φ между Ú и Íа , так как в зависимости от этого изменяется вектор É0 (при заданном значении U = Uном ).

На рис. 6.27 показаны упрощенные векторные диаграммы генератора с неявно выраженными полюсами для активной (а), активно-индуктивной (б) и активноемкостной (в) нагрузок. При активной и активно-индуктивной нагрузках ЭДС Е0 > U; при активно-емкостной нагрузке ЭДС Е0 < U. Таким образом, в первых двух случаях при увеличении нагрузки напряжение генератора уменьшается, в третьем — увеличивается. Это объясняется тем, что при активно-емкостной нагрузке имеется продольная намагничивающая составляющая реакции якоря, а при активной и активно-индуктивной нагрузках — продольная размагничивающая составляющая (при чисто активной нагрузке угол ψ > 0).

Рис. 6.27. Упрощенные векторные диаграммы
синхронного неявнополюсного генератора при
различных видах нагрузки

Рис.   6.28.   Внешние   характеристики   синхронного   генератора при различных видах нагрузки

На рис. 6.28, а изображены внешние характеристики генератора   при   различных   видах   нагрузки,   полученные   при одинаковом для всех характеристик значении Uном а на рис. 6.28,б - при одинаковом значении U0 = E0 . При U = 0 (короткое замыкание) все характеристики пересекаются в одной точке, соответствующей значению тока Iк .

При переходе от режима холостого хода к режиму номинальной нагрузки изменение напряжения характеризуется величиной (%)        

(6.22)
Δu = [(U0 - Uном )/Uном ]100.

Обычно генераторы работают с cos φ = 0,9 ÷ 0,85 при отстающем токе. В этом случае Δu = 25 ÷ 35 %. Чтобы подключенные к генератору потребители работали при напряжении, близком к номинальному, применяют специальные устройства, стабилизирующие его выходное напряжение U, например быстродействующие регуляторы тока возбуждения. Чем больше Δu, тем более сложным получается регулирующее устройство, а поэтому желательно иметь генераторы с небольшой величиной Δu. Однако для получения небольшого изменения Δu

Рис. 6.29. Регулировочные характеристики синхронного генератора при различных видах нагрузки
необходимо снижать синхронное индуктивное сопротивление Хсн (в неявнополюсных машинах) или соответственно Хd и Xq (в явнополюсных машинах), для чего требуется увеличивать воздушный зазор между ротором и статором. Это, в свою очередь, требует увеличения МДС обмотки возбуждения, т. е. ее размеров, что в конечном итоге делает синхронную машину более дорогой.

В турбогенераторах большой мощности мощность ограничивается именно размерами ротора, на котором размещена обмотка возбуждения. Поэтому в современных турбогенераторах с повышением мощности машины одновременно возрастает и изменение напряжения Δu. В гидрогенераторах (по сравнению с турбогенераторами) воздушный зазор обычно имеет гораздо большую величину, поэтому у них относительно слабее проявляется реакция якоря, т. е. они имеют меньшие синхронные индуктивные сопротивления, выраженные в относительных единицах, что обусловливает и меньшее изменение напряжения Δu.

Регулировочные характеристики. Зависимости тока возбуждения Iв от тока нагрузки Iа при неизменных напряжении U, угле φ и частоте f1 называют регулировочными характеристиками (рис. 6.29). Они показывают, как надо изменять ток возбуждения генератора, чтобы поддерживать его напряжение неизменным при изменении тока нагрузки. Очевидно, что с возрастанием нагрузки при φ > 0 необходимо увеличивать ток возбуждения, а при φ < 0 - уменьшать его. Чем больше угол φ по абсолютной величине, тем в большей степени требуется изменять ток возбуждения.

Здесь располагается содержимое id "columnright"