Все справочники Предисловие Введение
Глава 2
Трансформаторы
  1. Назначение и области применения трансформаторов
  2. Принцип действия трансформатора
  3. Устройство трансформаторов
  4. Охлаждение трансформаторов
  5. Идеализированный трансформатор
  6. Намагничивающий ток и ток холостого хода
  7. Комплексные уравнения и векторная диаграмма
  8. Схема замещения трансформатора
  9. Изменение вторичного напряжения и внешние характеристики
  10. Особенности работы трансформаторов малой мощности
  11. Коэффициент полезного действия трансформатора
  12. Преобразование  трехфазного  тока
  13. Группы соединений обмоток
  14. Параллельная работа трансформаторов
  15. Автотрансформатор
  16. Многообмоточные трансформаторы
  17. Регулирование напряжения в трансформаторах
  18. Трансформаторы с плавным регулированием напряжения
  19. Переходные процессы в трансформаторах
  20. Перенапряжения  в   трансформаторах
  21. Несимметричная нагрузка трехфазных трансформаторов
  22. Измерительные трансформаторы
  23. Трансформаторы для вентильных преобразователей
  24. Трансформаторы для электродуговой сварки, преобразования числа фаз и частоты
Глава 4
Асинхронные машины
  1. Назначение и принцип действия асинхронных машин
  2. Устройство трехфазных асинхронных двигателей
  3. Работа асинхронной машины при заторможенном роторе
  4. Работа асинхронной машины при вращающемся роторе
  5. Схема замещения
  6. Круговая диаграмма
  7. Механические  характеристики   асинхронного   двигателя
  8. Устойчивость работы асинхронного двигателя
  9. Рабочие характеристики асинхронного двигателя
  10. Пуск асинхронных двигателей
  11. Короткозамкнутые асинхронные двигатели с повышенным пусковым моментом
  12. Регулирование частоты вращения асинхронных двигателей и изменение направления вращения
  13. Законы управления при частотном регулировании асинхронных двигателей
  14. Работа асинхронного двигателя при несинусоидальном напряжении
  15. Асинхронные каскады
  16. Генераторный режим и режимы электромагнитного и динамического торможения
  17. Однофазные асинхронные двигатели
  18. Асинхронный  преобразователь  частоты
  19. Линейный асинхронный двигатель
  20. Электромагнитные индукционные насосы
  21. Асинхронный  автономный  генератор
  22. Работа асинхронного двигателя при неноминальных условиях
Список литературы

§ 4.8. УСТОЙЧИВОСТЬ РАБОТЫ АСИНХРОННОГО ДВИГАТЕЛЯ

Факторы, определяющие устойчивость. Под устойчивостью работы электродвигателя понимают способность двигателя восстанавливать установившуюся частоту вращения при кратковременных возмущениях (изменениях нагрузки, напряжения питающей сети и пр.).

Рассмотрим известное из механики условие равновесия моментов, приложенных к ротору двигателя:

(4.52)
М =Mст + Jdω2 /dt,
где М — электромагнитный момент двигателя; Mст — статический момент нагрузки (момент сопротивления механизма, приводимого во вращение, с учетом механических потерь в двигателе); Jdω2 /dt — динамический момент, зависящий от момента инерции вращающихся масс J и ускорения ротора 2 /dt.

При М = Mст ускорение ротора

(4.53)
2 /dt = (М - Mст )/J = 0,
т. е. ротор вращается с установившейся частотой. Если М > Мст , ротор ускоряется, а при М < Мст - замедляется.

Устойчивость зависит от конкретных условий, при которых работает электродвигатель, в частности от формы механических характеристик двигателя и приводимого им во вращение производственного механизма.

Рис.   4.23.

   Механические  характеристики   некоторых производственных   механизмов   (а)   и   графики   для определения статической устойчивости асинхронного двигателя (б)

На рис. 4.23, а для примера приведено несколько типичных механических характеристик различных производственных механизмов. Для грузоподъемных механизмов (кранов, лифтов, лебедок и т. п.) характерным является неизменность статического момента Мст, его практическое постоянство независимо от частоты вращения (прямая 1 на рис. 4.23, а). Вентиляторы, центробежные насосы, гребные винты и прочие механизмы имеют характеристику (кривая 2), при которой нагрузочный момент Мст резко увеличивается с ростом частоты вращения. Эту характеристику часто называют вентиляторной. Бетономешалки, шаровые мельницы и некоторые другие механизмы имеют большое трение в состоянии покоя и при малых частотах вращения, поэтому в таких механизмах с ростом частоты вращения нагрузочный момент падает (кривая 3).

Устойчивость «в малом». Рассмотрим работу асинхронного электродвигателя [механическая характеристика 1 на рис. 4.23, б], приводящего во вращение производственный механизм, у которого статический (нагрузочный) момент Мст падает с увеличением частоты вращения (механическая характеристика 2). В этом случае условие М = Мст выполняется в точках А и В при значениях частоты вращения пА и пB. Однако в точке В двигатель не может работать устойчиво, так как при малейшем изменении момента Мст (нагрузки) и возникающем в результате этого отклонении частоты вращения от установившегося значения появляется избыточный замедляющий или ускоряющий момент ± (М - Мст), увеличивающий это отклонение. Например, при случайном небольшом увеличении статического момента Мст ротор двигателя начинает замедляться, а его частота вращения п2 - уменьшаться. При работе машины в режиме, соответствующем точке В, т. е. на участке М - П характеристики 1, это приводит к уменьшению электро­магнитного момента М, т. е. к еще большему возрастанию разности (М - Мст). В результате ротор продолжает замедляться до полной остановки. При случайном уменьшении статического момента ротор начинает ускоряться, что приводит к дальнейшему увеличению момента М и еще большему ускорению до тех пор, пока машина не переходит в режим работы, соответствующий точке А. При работе машины в режиме, соответствующем точке А, двигатель работает устойчиво, так как при случайном увеличении момента Мст и замедлении ротора (т. е. уменьшении частоты вращения п2 ) электромагнитный момент М возрастает. Когда момент М станет равным новому значению Мст, двигатель снова работает с установившейся, но  несколько меньшей  частотой вращения.

Таким образом, асинхронный двигатель при работе на участке С - М механической характеристики обладает свойством внутреннего саморегулирования, благодаря которому его вращающий момент автоматически регулируется по закону М = Мст. Это регулирование осуществляется за счет увеличения или уменьшения частоты вращения ротора п2 , т. е. система регулирования является статической.

Сравнивая условия работы двигателя в точках А и В, можно сделать вывод, что работа двигателя устойчива, если с увеличением частоты вращения п2 статический момент Мст уменьшается медленнее, чем электромагнитный момент двигателя М. Это условие представим в следующем виде:

(4.54)

dM/dn2 < dМст /dn2 .

Оно выполняется практически для всех механизмов с падающими характеристиками Мст = f(n) и с характеристиками, не зависящими от частоты вращения (кривые 3 и 1 на рис. 4.23, а), если двигатель работает на участке С - М характеристики 1 (рис. 4.23,6). Следовательно, двигатель, приводящий во вращение подобные механизмы, может устойчиво работать только в диапазоне изменения скольжения 0 < s < sкр . При s > sкр , т.е. на участке М - П механической характеристики 1, устойчивая работа становится невозможной.

При работе электродвигателя совместно с производственным механизмом, имеющим вентиляторную характеристику (см. рис. 4.23, а), устойчивая работа возможна и на участке М - П механической характеристики 1, т. е. при S > Sкp . Однако допускать работу при скольжениях, больших критического, не следует, так как при этом резко уменьшается КПД двигателя, а потери мощности в его обмотках становятся настолько большими, что могут в короткое время вывести двигатель из строя.

Устойчивость «в большом». Практически условие (4.54) является необходимым, но недостаточным. В эксплуатации возможны не только кратковременные небольшие изменения Мст, но и существенные увеличения нагрузочного момента при резких изменениях режима работы. Когда двигатель работает при скольжении, меньшем sкp , но близком к нему, случайная перегрузка двигателя может привести к его остановке при Мст > Mmax. Поэтому максимальный момент иногда называют опрокидывающим моментом.

При больших перегрузках устойчивость работы двигателя обеспечивают путем выбора номинального момента Мном < Mmax . Отношение kм = Mmax /Мном , называемое перегрузочной способностью, регламентируется ГОСТом. Перегрузочная способность для различных двигателей различна: kм = 1,7 ÷ 3,5. Большие значения имеют двигатели, предназначенные для работы с большими перегрузками, — крановые, металлургические и т. п.

Рис. 4.24. Механические характеристики асинхронного двигателя при различных напряжениях

Увеличение перегрузочной способности асинхронного двигателя ведет к возрастанию его габаритов и массы или к снижению энергетических показателей. Из формулы (4.48) видно, что значение максимального момента приблизительно обратно пропорционально индуктивным сопротивлениям Х1 + Х'2 обмоток. Для увеличения перегрузочной способности двигателя следует уменьшать эти сопротивления, т. е. числа витков обмоток статора и ротора. А это приводит к возрастанию магнитного потока (а следовательно, к увеличению сечения магнитопровода) и тока холостого хода. Поэтому двигатели с повышенным значением kм имеют большие габариты и массу, а ток холостого хода у них достигает 40 - 60% от номинального.

Большое значение для обеспечения устойчивой работы асинхронных двигателей имеет качество электроснабжения. Вращающий момент асинхронного двигателя зависит от квадрата питающего напряжения [см. (4.56) и (4.48)]. Поэтому даже незначительное уменьшение напряжения влияет на максимальный момент, а значительное уменьшение может вызвать остановку двигателя.

На рис. 4.24, а и б для примера приведены механические характеристики асинхронного двигателя при номинальном напряжении Ul = Uном (кривая 1) и напряжении Ul = 0,7Uном (кривая 2). Во втором случае электромагнитный момент уменьшается примерно в два раза, и работа двигателя при номинальной нагрузке становится невозможной. ГОСТом установлено, что длительное изменение напряжения в электрических сетях, питающих силовое оборудование, не должно отличаться от номинального более чем на - 5% и +10%.

Здесь располагается содержимое id "columnright"