[an error occurred while processing this directive]
Все справочники Предисловие Введение
Глава I

Глава I. ЭЛЕКТРИЧЕСКИЕ ЦЕПИ ПОСТОЯННОГО ТОКА

1.1. Получение и области применений постоянного тока 1.2. Элементы электротехнических установок электрические цепи и схемы 1.3. Задачи расчета и анализа электрических цепей. Параметры, используемые при расчете и анализе 1.4. Некоторые условные обозначения и классификация электрических цепей. Понятие о двухполюсниках 1.5. Проводниковые и электроизоляционные материалы. Сопротивление проводников и электрическая прочность диэлектриков 1.6. Направления токов, напряжений и э.д.с., единицы их измерения 1.7. Некоторые особенности использования законов Ома и Кирхгофа при расчете и анализе электрических цепей 1.8. Нагревание элементов электрических цепей 1.9. Режимы работы элементов электрических цепей 1.10. Электрические цепи с одним источником энергии и пассивными (резистивными) элементами 1.11. Понятие об источнике тока 1.12. Неразветвленная электрическая цепь с одним источником энергии и активным приемником 1.13. Уравнение баланса мощностей электрических цепей 1.14. Разветвленные электрические схемы с несколькими источниками 1.15. Способы соединения источников электрической энергии 1.16. Нелинейные электрические цепи постоянного тока 1.17. Мостовые электрические цепи 1.18, Понятие об электрическом моделировании
Глава II

Глава II. ЭЛЕКТРИЧЕСКИЕ ЦЕПИ СИНУСОИДАЛЬНОГО ТОКА

2.1. Получение синусоидальной эдс. Основные соотношения 2.2. Действующее и среднее значения синусоидальных тока, эдс и напряжения 2.3 Векторные диаграммы 2.4. Цепь, содержащая резистивный элемент с активным сопротивлением r 2.5. Цепь, содержащая индуктивный элемент с индуктивностью L 2.6. Цепь, содержащая емкостный элемент с емкостью С 2.7. Цепь, содержащая катушку с активным сопротивлением r и индуктивностью L 2.8. Цепь, содержащая резистивный и емкостный элементы 2.9. Последовательное соединение r, L и С 2.10. Активная, реактивная и полная мощности цепи 2.11. Законы Кирхгофа в векторной форме 2.12. Резонанс напряжений 2.13. Разветвление цепи 2.14. Резонанс токов 2.15. Понятие о круговых диаграммах 2.16. Расчет синусоидальных цепей с использованикм комплексных чисел 2.17. Изображение напряжений и токов комплексными числами и векторами на комплексной плоскости 2.18. Комплексные значения полных сопротивлений и проводимостей цепи. Закон Ома в комплексной форме 2.19. Законы Кирхгофа в коиплексной форме 2.20. Выражение мощности в комплексной форме 2.21. Расчет сложных цепей 2.22. Цепи, связанные взаимной индукцией
Глава VI

Глава VI. ЭЛЕКТРОМАГНИТНЫЕ УСТРОЙСТВА
А. МАГНИТНЫЕ ЦЕПИ С ПОСТОЯННОЙ МАГНИТОДВИЖУЩЕЙ СИЛОЙ

6.1. Понятие об электромагнитных устройствах и магнитных цепях 6.2. Основные величины, используемые при расчете и анализе магнитных цепей. Задачи расчета и анализа 6.3. Свойства ферромагнитных материалов 6.4. Допущения и особенности использования основных законов магнитных цепей при расчете и анализе 6.5. Неразветвленные магнитные цепи 6.6. Неразветвленные магнитные цепи с постоянными магнитами 6.7. Разветвленные магнитные цепи 6.8. Основы расчета намагничивающих обмоток 6.9. Тяговое усилие в электромагнитных устройствах

Глава VI. ЭЛЕКТРОМАГНИТНЫЕ УСТРОЙСТВА
Б. МАГНИТНЫЕ ЦЕПИ С ПЕРЕМЕННОЙ МАГНИТОДВИЖУЩЕЙ СИЛОЙ

6.10. Явления, происходящие в магнитных цепях электромагнитных устройств переменного тока, и некоторые их конструктивные особенности 6.11. Формы кривых ЭДС е, магнитного потока Ф, тока i имгновенной мощности ρ идеализированной обмотки 6. 12. Вольт-амперные характеристики идеализированной обмотки 6.13. Эквивалентный ток и векторная диаграмма идеализированной обмотки 6.14. Схема замещения идеализированной обмотки и параметры схемы замещения 6.15. Схема замещения, векторные диаграммы и мощности реальной обмотки с ферромагнитным магнитопроводом 6.16. Определение тока, мощностей, эквивалентных соротивлений и угла сдвига фаз между напряжением и током реальной обмотки 6.17. феррорезонансный стабилизатор напряжения

Глава VI. ЭЛЕКТРОМАГНИТНЫЕ УСТРОЙСТВА
В. МАГНИТНЫЕ ЦЕПИ С ПОСТОЯННОЙ И ПЕРЕМЕННОЙ МАГНИТОДВИЖУЩИМИ СИЛАМИ

6.18. Понятие о дросселях насыщения и магнитных усилителях 6.19. Устройство МУ 6.20. Принцип действия МУ 6.21. Соотношения между токами и характеристика управления МУ 6.22. Коэффициенты усиления МУ 6.23. Обратные связи в МУ 6.24. Смещение в МУ 6.25. Понятие о двухтактных и трехфазных МУ
Глава IX

Глава IX. МАШИНЫ ПОСТОЯННОГО ТОКА

9.1. Назначение и устройство машин постоянного тока 9.2. Краткие сведения об обмотках якорей. Принцип действия машин постоянного тока 9.3. ЭДС якоря и электромагнитный момент машин постоянного тока 9.4. Явление реакции якоря в машинах постоянного тока 9.5. Явление коммутации в машинах постоянного тока 9.6. Классификация генераторов постоянного тока по способу возбуждения. Схемы включения генераторов 9.7. Свойства и характеристики генераторов независимого возбуждения 9.8. Свойства и характеристики генераторов параллельного возбуждения 9.9. Свойства и характеристики генераторов смешанного возбуждения 9.10. Сравнительная оценка и технические данные генераторов постоянного тока 9.11. Классификация двигателей по способу возбуждения. Схемы включения двигателей и положительные направления частоты вращения, момента, токов и других величин 9.12. Зависимости токов от нагрузки двигателей. Соотношения между токами 9.13. Зависимости магнитного потока от тока якоря двигателей 9.14. Зависимости момента от тока якоря. Перегрузочная способность двигателей 9.15. Соотношение между напряжением, ЭДС и падением напряжения в сопротивлениях цепи якоря. Формула тока якоря 9.16. Естественные механические и электромеханические характеристики двигателей 9.17. Пуск двигателей 9.18. Регулирование частоты вращения двигателей 9.19. Тормозные режимы работы двигателей 9.20. Потери мощности и КПД машин постоянного тока 9.21. Сравнительная оценка и технические данные двигателей постоянного тока 9.22. Универсальные коллекторные двигатели 9.23. Микродвигатели постоянного тока
Глава X

Глава X.

10.1. Устройство асинхронного двигателя трехфазного тока 10.2. Вращающееся магнитное поле 10.3. Принцип действия асинхронного двигателя 10.4. ЭДС обмотки статора 10.5. ЭДС, частота тока ротора, скольжение 10.6. Индуктивные сопротивления обмоток статора и ротора 10.7. Ток и эквивалентная схема фазы обмотки ротора 10.8. Магнитодвижущие силы оьмоток статора и ротора. Ток обмотки статора 10.9. Электромагнитная мощность и потери в асинхронном двигателе 10.10. Момент, развиваемый двигателем 10.11. Схема замещения асинхронного двигателя 10.12. Механическая характеристика асинхронного двигателя 10.13. Паспортные данные двигателя. Расчет и построение механической характеристики 10.14. Пуск асинхронных двигателей 10.15. Двигатели с улучшенными пусковыми свойствами 10.16. Регулирование частоты вращения 10.17. Тормозные режимы работы 10.18. Энергетические показатели асинхронного двигателя 10.19. Однофазные асинхронные двигатели 10.20. Асинхронный тахогенератор 10.21. Сельсины 10.22. Вращающийся трансформатор 10.23. Понятие о линейном трехфазном асинхронном двигателе

Глава   десятая
АСИНХРОННЫЕ  МАШИНЫ

10.16. РЕГУЛИРОВАНИЕ ЧАСТОТЫ ВРАЩЕНИЯ

Для получения наибольшей производительности, точности обработки или иных показателей исполнительный орган производственного механизма должен вращаться или перемещаться поступательно с соответствующей этому оптимальному режиму скоростью. В связи с этим возникает необходимость принудительного регулирования скорости исполнительного органа в соответствии с технологическими требованиями. В недалеком прошлом регулирование скорости осуществлялось с помощью коробок скоростей, механических вариаторов  и т. п.

Рис. 10.25 Схема соединения обмотки статора двухскоростного асинхронного двигателя при двух (а) и четырех (б) полюсах

Перечисленные способы имеют ряд существенных недостатков, одним из которых является усложнение кинематики механизма, другим — ступенчатое регулирование и т.п. По этой причине в настоящее время стали широко использовать регулировочные свойства двигателя — регулирование скорости механизма путем изменения частоты вращения двигателя, что привело к значительному упрощению кинематики устройства и управления, удешевлению механизма, осуществлению плавного регулирования скорости.

Рассмотрим вначале возможные способы регулирования частоты вращения ротора асинхронного двигателя с короткозамкнутым ротором. Как известно, частота вращения ротора в нормальном режиме работы несколько меньше (на 2 — 8%) частоты вращения магнитного поля. Поэтому изменение частоты вращения магнитного поля вызывает изменение в той же степени и частоты вращения ротора двигателя.

Из выражения частоты вращения магнитного поля

n0 = 60f1/р

вытекают два наиболее распространенных способа регулирования частоты вращения 1) изменением числа пар полюсов р; 2) изменением частоты f1 напряжения источника

Регулирование изменением числа пар полюсов осуществляется изменением схемы соединения обмотки статора с помощью переключателя. Обмотка каждой фазы двухскоростного асинхронного двигателя состоит из нескольких частей, которые соединяются между собой параллельно или последовательно. В результате образуются разные числа пар полюсов. На рис 10.25, а изображена обмотка одной фазы статора, имеющая две части, которые соединены между собой параллельно, на рис   10.25, б — последовательно.

Рис. 10.26 Механические характеристики двухскоростного асинхронного двигателя с короткозамкнутой обмоткой ротора с постоянным моментом Мmax (а) и постоянной мощностью (б)

Рассмотрев картины магнитного поля, созданного током обмотки одной фазы статора для какого-то момента времени, легко убедиться, что на рис. 10.25, а обмотка образует р = 1, а на рис. 10.25, б - р = 2 пар полюсов. Обмотки статора двух других фаз, сдвинутые в пространстве на электрический угол в 120°, соединяются так же, как и первая. Результирующее магнитное поле, естественно, будет иметь столько же пар полюсов, сколько и поле, созданное одной фазой обмотки. Необходимо заметить, что никаких переключений обмотки ротора не производится: ток обмотки ротора всегда образует столько пар полюсов, сколько их создано обмоткой статора. Рассмотренный способ дает возможность получить только две скорости, отличающиеся по значению в 2 раза, что является его существенным недостатком.

Отечественная промышленность выпускает двухскоростные асинхронные двигатели со следующими частотами вращения магнитных полей: 3000/1500; 1500/750; 1000/500 об/мин и др. Механические характеристики двухскоростного двигателя изображены на рис. 10.26. Значения максимальных моментов будут равными (рис. 10.26, а), если равны магнитные потоки двигателя для первого и второго способов соединения обмоток, в противном случае (рис. 10.26, б) они не равны. Как следует из выражения

UE = 4,44w1f1Фk01,

магнитные потоки будут равными, если остается неизменным отношение U/f1 для первой и второй схем соединения обмоток.
Рис. 10.27. Структурная схема частотного регулирования скорости асинхронного двигателя с короткозамкнутым ротором с машинным (а) и статическим (б) преобразователями частоты

Трехскоростные и четырехскоростные двигатели имеют по две независимые обмотки статора, одна из которых образует две скорости,  а   другая   в   трехскоростном   двигателе — одну, в четырехскоростном двигателе — две скорости. Могут быть двигатели со следующими частотами вращения n0: трехскоростные - 1500/1000/750, 1000/750/500 об/мин; четырехскоростные - 3000/1500/1000/500, 1500/1000/750/500 об/мин.

Для регулирования частоты вращения ротора изменением частоты тока статора необходимо иметь отдельный источник или преобразователь энергии с регулируемой частотой. До последнего времени в качестве источника энергии использовались синхронные, асинхронные или индукционные генераторы. При этом установка (рис. 10.27, а) состояла из нескольких машин: приводного асинхронного или синхронного двигателя 1, работающего с постоянной частотой вращения синхронного генератора 2, механического или электрического регулятора скорости 3, асинхронного двигателя 4 и исполнительного механизма 5. Частота f1 напряжения в обмотке статора синхронного генератора равна

f1 = рn/60.

При изменении частоты вращения синхронного генератора изменяется частота f1 и, следовательно, частота вращения ротора асинхронного короткозамкнутого двигателя 4 и исполнительного механизма 5. На рис. 10.28 изображены механические характеристики асинхронного двигателя при частотном регулировании скорости. Предполагается, что с изменением частоты в такой же степени изменяется и напряжение, а их отношение U/f1 остается постоянным. Такой способ позволяет получить широкий диапазон и плавное регулирование частоты вращения, однако он имеет плохие технико-экономические показатели: низкий КПД, большие капитальные вложения и т. п., поэтому применяется редко.

Рис. 10.28. Механические характеристики асинхронного двигателя при частотном регулировании скорости

В настоящее время разработаны статические преобразователи частоты на тиристорах, обладающих высокими технико-экономическими показателями. Структурная схема такой установки изображена на рис. 10.27, б. Здесь 1 — статический преобразователь, 2 — асинхронный двигатель, 3 — исполнительный механизм.

Существуют также другие, мало распространенные способы регулирования частоты вращения короткозамкнутого двигателя, например изменением напряжения на обмотке статора. В качестве регулятора используется индуктивное регулируемое сопротивление, включенное в цепь обмотки статора (например, силовой магнитный усилитель).

Регулирование частоты вращения ротора асинхронного двигателя с фазным ротором в большинстве случаев осуществляется путем введения в цепь обмотки ротора дополнительного сопротивления (см. рис. 10.23).

Как следует из (10.55) и (10.56), добавочное сопротивление в цепи обмотки ротора увеличивает критическое скольжение sкр и не влияет на значение максимального момента Mmax . Искус­ственные (реостатные) характеристики двигателя рассчитывают с помощью уравнения (10.62).

На рис. 10.29 сплошными линиями изображены естественные и искусственные механические характеристики асинхронного двигателя для различных значений добавочных сопротивлений в цепи обмотки ротора. Из кривых следует, что при заданном моменте на валу Мс частота вращения ротора на каждой механической характеристике будет разной (п1, n2, n3).

Рис. 10.29. Естественные и искусственные (реостатные) механические характеристики, а также зависимости тока ротора от скольжения асинхронного двигателя с контактными кольцами

Для выбора регулировочного и пускового реостатов по нагреву необходимо знать значения токов в роторной цепи двигателя. Для определения тока используют тот факт, что ток ротора определяется моментом двигателя и не зависит от значения добавочного сопротивления в цепи обмотки ротора. Например, моменту Мс (рис. 10.29) на естественной и искусственной характеристиках соответствует один и тот же ток I. Это положение можно доказать аналитически.

Момент, развиваемый двигателем, равен:

на естественной характеристике

M = 3I22r2 ,
ω0s

на искусственной характеристике

Mи = 3I2(r2 + rд) .
ω0sи

Допустим, что М = Ми = Мс . Тогда

3I22r2 =3I2(r2 + rд) ,
ω0s ω0sи
или
I22 =s  (r2 + rд) ,
I2sиr2

Выразив s/sи через сопротивления цепи ротора, получим

I22 =r2(r2 + rд) = 1.
I2(r2 + rд)r2

К недостаткам реостатного способа регулирования частоты вращения относятся значительные потери энергии в регулировочном реостате, малая жесткость механических характеристик: небольшое изменение момента на валу вызывает значительное изменение частоты вращения, а также невозможность получения плавного регулирования. Рассмотренный способ используется в системах, где работа на реостатных характеристиках непродолжительна.


Пример 10.2. Рассчитать и построить естественную и искусственную механические характеристики, а также зависимости тока ротора от скольжения асинхронного двигателя с фазным ротором при rд = 0,08 Ом.

Паспортные данные двигателя: Рном = 60 кВт, nном = 720 об/мин, Mmax /Mном = λ = 2,2, E = 175 В, I2ном = 216 А.

Решение. Естественная и искусственная механические характеристики рассчитываются и затем строятся на основании уравнений (10.57) и (10.62):

M = 2Mmax и Ми = 2Mmax
sкр/s + s/sкр sкр,и /sи + sи/sкр,и

Значения Mmax, sкр , sкр,и определяются из (10.58а), (10.58), (10.65), а r2 , входящее в (10.65), — из (10.59а). После подстановки паспортных данных в указанные формулы получим Mmax = 1760 Н•м, sкр = 0,166, sкр,и = 0,88, r2 = 0,0187 Ом, s = 0,04.

Подставляя значения s (например, 0,004; 0,1; 0,2; 0,4; 0,6; 0,8; 1) в уравнения (10.57) и (10.64), определяем соответствующие им значения М и Ми . Результаты расчета сводим в таблицу.

Механические характеристики n(М), s(M), построенные по результатам расчета, изображены на рис. 10.29 сплошными линиями (а - при r = 0, б - при rд = 0,08 Ом).Зависимость I2 от s определяется из (10.59):

I2 = Mω0s при rд = 0;    I = Mиω0sи при rд ≠ 0
3r23(r2 + rд)

Подставляя в (10.59) значения s, sи соответствующие им значения М и Ми из упомянутой выше таблицы определяют I2 и I. Результаты расчета заносят в таблицу. На рис. 10.29 пунктирными линиями изображены построенные по результатам расчета графики I2 и I (график в — для r = 0, график г — для rд = 0,08 Ом).

Пример 10.3. Определить сопротивление, которое нужно включить в цепь ротора, чтобы двигатель вращался с частотой n = 650 об/мин и развивал момент М = 200 Н • м.

Паспортные данные двигателя: Рном = 22 кВт, Uном = 380/220 В, nном = 723 об/мин, Мmax/Мном = λ = 3, E = 197 В, I2ном = 70,5 А.

Решение. Искомое значение rд определяется из (10.65):

rд = r2(sкр,и/sкр -1).

Значения r2, sкр, sкр,и определяются из (10.59а), (10.58) и (10.62), в котором Ми = 200 Н•м, Мmax— из (10.58а), sи = (n0 - nи)/n0 , где n = 650 об/мин.

После подстановки в указанные формулы соответствующих значений паспортных данных двигателя получим: r2 = 0,0582 Ом, sном = 0,036, Мmax = 873 Н•м, sкр = 0,21, sи = 0,133, sкр,и = 1,15, rд = 0,26 Ом.

 [an error occurred while processing this directive]