[an error occurred while processing this directive]
Все справочники Предисловие Введение
Глава I

Глава I. ЭЛЕКТРИЧЕСКИЕ ЦЕПИ ПОСТОЯННОГО ТОКА

1.1. Получение и области применений постоянного тока 1.2. Элементы электротехнических установок электрические цепи и схемы 1.3. Задачи расчета и анализа электрических цепей. Параметры, используемые при расчете и анализе 1.4. Некоторые условные обозначения и классификация электрических цепей. Понятие о двухполюсниках 1.5. Проводниковые и электроизоляционные материалы. Сопротивление проводников и электрическая прочность диэлектриков 1.6. Направления токов, напряжений и э.д.с., единицы их измерения 1.7. Некоторые особенности использования законов Ома и Кирхгофа при расчете и анализе электрических цепей 1.8. Нагревание элементов электрических цепей 1.9. Режимы работы элементов электрических цепей 1.10. Электрические цепи с одним источником энергии и пассивными (резистивными) элементами 1.11. Понятие об источнике тока 1.12. Неразветвленная электрическая цепь с одним источником энергии и активным приемником 1.13. Уравнение баланса мощностей электрических цепей 1.14. Разветвленные электрические схемы с несколькими источниками 1.15. Способы соединения источников электрической энергии 1.16. Нелинейные электрические цепи постоянного тока 1.17. Мостовые электрические цепи 1.18, Понятие об электрическом моделировании
Глава II

Глава II. ЭЛЕКТРИЧЕСКИЕ ЦЕПИ СИНУСОИДАЛЬНОГО ТОКА

2.1. Получение синусоидальной эдс. Основные соотношения 2.2. Действующее и среднее значения синусоидальных тока, эдс и напряжения 2.3 Векторные диаграммы 2.4. Цепь, содержащая резистивный элемент с активным сопротивлением r 2.5. Цепь, содержащая индуктивный элемент с индуктивностью L 2.6. Цепь, содержащая емкостный элемент с емкостью С 2.7. Цепь, содержащая катушку с активным сопротивлением r и индуктивностью L 2.8. Цепь, содержащая резистивный и емкостный элементы 2.9. Последовательное соединение r, L и С 2.10. Активная, реактивная и полная мощности цепи 2.11. Законы Кирхгофа в векторной форме 2.12. Резонанс напряжений 2.13. Разветвление цепи 2.14. Резонанс токов 2.15. Понятие о круговых диаграммах 2.16. Расчет синусоидальных цепей с использованикм комплексных чисел 2.17. Изображение напряжений и токов комплексными числами и векторами на комплексной плоскости 2.18. Комплексные значения полных сопротивлений и проводимостей цепи. Закон Ома в комплексной форме 2.19. Законы Кирхгофа в коиплексной форме 2.20. Выражение мощности в комплексной форме 2.21. Расчет сложных цепей 2.22. Цепи, связанные взаимной индукцией
Глава VI

Глава VI. ЭЛЕКТРОМАГНИТНЫЕ УСТРОЙСТВА
А. МАГНИТНЫЕ ЦЕПИ С ПОСТОЯННОЙ МАГНИТОДВИЖУЩЕЙ СИЛОЙ

6.1. Понятие об электромагнитных устройствах и магнитных цепях 6.2. Основные величины, используемые при расчете и анализе магнитных цепей. Задачи расчета и анализа 6.3. Свойства ферромагнитных материалов 6.4. Допущения и особенности использования основных законов магнитных цепей при расчете и анализе 6.5. Неразветвленные магнитные цепи 6.6. Неразветвленные магнитные цепи с постоянными магнитами 6.7. Разветвленные магнитные цепи 6.8. Основы расчета намагничивающих обмоток 6.9. Тяговое усилие в электромагнитных устройствах

Глава VI. ЭЛЕКТРОМАГНИТНЫЕ УСТРОЙСТВА
Б. МАГНИТНЫЕ ЦЕПИ С ПЕРЕМЕННОЙ МАГНИТОДВИЖУЩЕЙ СИЛОЙ

6.10. Явления, происходящие в магнитных цепях электромагнитных устройств переменного тока, и некоторые их конструктивные особенности 6.11. Формы кривых ЭДС е, магнитного потока Ф, тока i имгновенной мощности ρ идеализированной обмотки 6. 12. Вольт-амперные характеристики идеализированной обмотки 6.13. Эквивалентный ток и векторная диаграмма идеализированной обмотки 6.14. Схема замещения идеализированной обмотки и параметры схемы замещения 6.15. Схема замещения, векторные диаграммы и мощности реальной обмотки с ферромагнитным магнитопроводом 6.16. Определение тока, мощностей, эквивалентных соротивлений и угла сдвига фаз между напряжением и током реальной обмотки 6.17. феррорезонансный стабилизатор напряжения

Глава VI. ЭЛЕКТРОМАГНИТНЫЕ УСТРОЙСТВА
В. МАГНИТНЫЕ ЦЕПИ С ПОСТОЯННОЙ И ПЕРЕМЕННОЙ МАГНИТОДВИЖУЩИМИ СИЛАМИ

6.18. Понятие о дросселях насыщения и магнитных усилителях 6.19. Устройство МУ 6.20. Принцип действия МУ 6.21. Соотношения между токами и характеристика управления МУ 6.22. Коэффициенты усиления МУ 6.23. Обратные связи в МУ 6.24. Смещение в МУ 6.25. Понятие о двухтактных и трехфазных МУ
Глава IX

Глава IX. МАШИНЫ ПОСТОЯННОГО ТОКА

9.1. Назначение и устройство машин постоянного тока 9.2. Краткие сведения об обмотках якорей. Принцип действия машин постоянного тока 9.3. ЭДС якоря и электромагнитный момент машин постоянного тока 9.4. Явление реакции якоря в машинах постоянного тока 9.5. Явление коммутации в машинах постоянного тока 9.6. Классификация генераторов постоянного тока по способу возбуждения. Схемы включения генераторов 9.7. Свойства и характеристики генераторов независимого возбуждения 9.8. Свойства и характеристики генераторов параллельного возбуждения 9.9. Свойства и характеристики генераторов смешанного возбуждения 9.10. Сравнительная оценка и технические данные генераторов постоянного тока 9.11. Классификация двигателей по способу возбуждения. Схемы включения двигателей и положительные направления частоты вращения, момента, токов и других величин 9.12. Зависимости токов от нагрузки двигателей. Соотношения между токами 9.13. Зависимости магнитного потока от тока якоря двигателей 9.14. Зависимости момента от тока якоря. Перегрузочная способность двигателей 9.15. Соотношение между напряжением, ЭДС и падением напряжения в сопротивлениях цепи якоря. Формула тока якоря 9.16. Естественные механические и электромеханические характеристики двигателей 9.17. Пуск двигателей 9.18. Регулирование частоты вращения двигателей 9.19. Тормозные режимы работы двигателей 9.20. Потери мощности и КПД машин постоянного тока 9.21. Сравнительная оценка и технические данные двигателей постоянного тока 9.22. Универсальные коллекторные двигатели 9.23. Микродвигатели постоянного тока
Глава X

Глава X.

10.1. Устройство асинхронного двигателя трехфазного тока 10.2. Вращающееся магнитное поле 10.3. Принцип действия асинхронного двигателя 10.4. ЭДС обмотки статора 10.5. ЭДС, частота тока ротора, скольжение 10.6. Индуктивные сопротивления обмоток статора и ротора 10.7. Ток и эквивалентная схема фазы обмотки ротора 10.8. Магнитодвижущие силы оьмоток статора и ротора. Ток обмотки статора 10.9. Электромагнитная мощность и потери в асинхронном двигателе 10.10. Момент, развиваемый двигателем 10.11. Схема замещения асинхронного двигателя 10.12. Механическая характеристика асинхронного двигателя 10.13. Паспортные данные двигателя. Расчет и построение механической характеристики 10.14. Пуск асинхронных двигателей 10.15. Двигатели с улучшенными пусковыми свойствами 10.16. Регулирование частоты вращения 10.17. Тормозные режимы работы 10.18. Энергетические показатели асинхронного двигателя 10.19. Однофазные асинхронные двигатели 10.20. Асинхронный тахогенератор 10.21. Сельсины 10.22. Вращающийся трансформатор 10.23. Понятие о линейном трехфазном асинхронном двигателе

Глава вторая
ЭЛЕКТРИЧЕСКИЕ ЦЕПИ СИНУСОИДАЛЬНОГО ТОКА

2.5. ЦЕПЬ, СОДЕРЖАЩАЯ ИНДУКТИВНЫЙ ЭЛЕМЕНТ С ИНДУКТИВНОСТЬЮ L

Обмотки (катушки) электрических машин, трансформаторов, магнитных усилителей, электромагнитов, реле, контакторов, индукторов электрических нагревательных устройств и печей переменного тока обладают значительной индуктивностью. В радиотехнических устройствах индуктивные катушки используются для образования колебательных контуров, электрических фильтров и т. п. Параметрами катушек являются активное сопротивление r и индуктивность L. Изменяющийся во времени ток наводит в этих катушках ЭДС самоиндукции, которая по значению во многих случаях заметно больше, чем падение напряжения на активных сопротивлениях.

Рассмотрим вначале катушку, активное сопротивление которой настолько мало, что им можно пренебречь.

Для выяснения процессов, происходящих в цепи с индуктивностью (рис. 2.7, а), допустим, что ток в индуктивности изменяется синусоидально

(2.5)

i = Im sin ωt.

Рис. 2.7. Электрическая цепь, содержащая индуктивный элемент с индуктивностью L (а), ее векторная диаграмма (б) и графики мгновенных значений u, i, p (в)

Ток вызывает в индуктивности ЭДС самоиндукции

(2.6)

eL = - Ldi/dt.

Уравнение, составленное по второму закону Кирхгофа для данной цепи, имеет вид

(2.7)

eL = - и.

Выразив eL и i через их значения из (2.5) и (2.6). найдем напряжение на индуктивности:

u = L dIm sin ωt .
dt

Выполнив операцию дифференцирования, получим

(2.8)
и = ωLIm cos ωt = ωLIm sin (ωt + π ) = Um sin (ωt + π ).
2 2

Из сравнения выражений (2.5) и (2.8) можно сделать вывод, что ток в цепи с индуктивностью и напряжение на индуктивности изменяются по синусоиде, а напряжение опережает по фазе ток на угол 90°.

Векторная диаграмма цепи с индуктивностью изображена на рис. 2.7, б, а графики мгновенных значений тока и напряжения — на рис. 2.7, в.

Напряжение и ток в цепи с индуктивностью, как следует из выражения (2.8), связаны соотношением

Um = ωLIm ,

откуда

(2.9)

Im = Um /ωL

Разделив левую и правую части (2.9) на √2, получим закон Ома для цепи переменного тока с индуктивностью.

I = U = U .
ωL xL
где xL = ωL = 2πfL — индуктивное сопротивление, Ом.

Представив в (2.7) ЭДС самоиндукции и напряжение векторами, получим уравнение цепи в векторной форме для действующих значений

Ē = - Ū,

или после замены напряжения произведением тока и индуктивного сопротивления

Ē = - ĪxL.

Таким образом, ЭДС самоиндукции может быть выражена через ток и индуктивное сопротивление. Такой способ выражения ЭДС во многих случаях значительно упрощает анализ цепей с индуктивностью.

Мгновенная мощность цепи с индуктивностью равна

р = ui = Im sin ωtUm sin (ωt + π ) = UmIm sin 2ωt = UI sin 2ωt =Pm sin 2ωt.
2 2

Мгновенное значение мощности (рис. 2.7, в) изменяется синусоидально с частотой, в 2 раза большей частоты тока. Амплитудное значение мощности

Pm = UI.

Легко показать аналитически и из графика рис. 2.7, в, что среднее значение мощности за период (активная мощность) равно нулю:

 
1
T
T  
P = ui dt = 0.
  0  

Для пояснения энергетических процессов в цепи с индуктивностью используем график рис. 2.7, в.
В интервале времени от t = 0 (точка 1) до t= T/4 (точка 2), когда ток в цепи возрастает от 0 до Im, электрическая энергия из сети поступает в индуктивность, преобразуется и накапливается в ней в виде энергии магнитного поля.

Наибольшее значение энергии магнитного поля будет в момент времени, соответствующий точке 2, когда ток достигает амплитудного значения.

WL = I2mL .
2

Можно показать, что эта энергия равна заштрихованной площади графика р = f(t) в интервале времени между точками 1 и 2 (отмечена знаком « + ». Действительно,

  T/4   T/4
UmIm sin 2ωt dt = UmIm | -cos2ωt|0T/4 = UmIm = Im2xL = Im2ωL = Im2L .
2 2 • 2ω 2
WL = ui dt =
  0   0

В интервале времени между точками 2 и 3 ток в цепи убывает. Энергия магнитного поля преобразуется в электрическую энергию и возвращается в сеть. В момент времени, соответствующий точке 3, ток и энергия магнитного поля равны нулю.

Энергия, отданная в сеть, равна заштрихованной площади графика p = f(t) в интервале времени между точками 2 и 3 (отмечена знаком « - »). Из графиков рис. 2.7, в видно, что площади, определяющие запасенную и отданную энергию, равны. Следовательно, энергия, накопленная в магнитном поле индуктивности в первую четверть периода, полностью возвращается в сеть во вторую четверть периода.

В следующую четверть периода в интервале времени между точками 3 и 4 изменяются направления тока и магнитного потока. Происходит процесс, аналогичный процессу в первую четверть периода: энергия из сети поступает в индуктивность и накапливается в ней в виде энергии магнитного поля. В последнюю четверть периода в интервале времени между точками 4 и 5 энергия магнитного поля возвращается в сеть.

Таким образом, в цепи с индуктивностью происходит непрерывный периодический процесс обмена энергией между сетью (источником энергии) и индуктивностью.

 [an error occurred while processing this directive]