[an error occurred while processing this directive]
Все справочники Предисловие Введение
Глава I

Глава I. ЭЛЕКТРИЧЕСКИЕ ЦЕПИ ПОСТОЯННОГО ТОКА

1.1. Получение и области применений постоянного тока 1.2. Элементы электротехнических установок электрические цепи и схемы 1.3. Задачи расчета и анализа электрических цепей. Параметры, используемые при расчете и анализе 1.4. Некоторые условные обозначения и классификация электрических цепей. Понятие о двухполюсниках 1.5. Проводниковые и электроизоляционные материалы. Сопротивление проводников и электрическая прочность диэлектриков 1.6. Направления токов, напряжений и э.д.с., единицы их измерения 1.7. Некоторые особенности использования законов Ома и Кирхгофа при расчете и анализе электрических цепей 1.8. Нагревание элементов электрических цепей 1.9. Режимы работы элементов электрических цепей 1.10. Электрические цепи с одним источником энергии и пассивными (резистивными) элементами 1.11. Понятие об источнике тока 1.12. Неразветвленная электрическая цепь с одним источником энергии и активным приемником 1.13. Уравнение баланса мощностей электрических цепей 1.14. Разветвленные электрические схемы с несколькими источниками 1.15. Способы соединения источников электрической энергии 1.16. Нелинейные электрические цепи постоянного тока 1.17. Мостовые электрические цепи 1.18, Понятие об электрическом моделировании
Глава II

Глава II. ЭЛЕКТРИЧЕСКИЕ ЦЕПИ СИНУСОИДАЛЬНОГО ТОКА

2.1. Получение синусоидальной эдс. Основные соотношения 2.2. Действующее и среднее значения синусоидальных тока, эдс и напряжения 2.3 Векторные диаграммы 2.4. Цепь, содержащая резистивный элемент с активным сопротивлением r 2.5. Цепь, содержащая индуктивный элемент с индуктивностью L 2.6. Цепь, содержащая емкостный элемент с емкостью С 2.7. Цепь, содержащая катушку с активным сопротивлением r и индуктивностью L 2.8. Цепь, содержащая резистивный и емкостный элементы 2.9. Последовательное соединение r, L и С 2.10. Активная, реактивная и полная мощности цепи 2.11. Законы Кирхгофа в векторной форме 2.12. Резонанс напряжений 2.13. Разветвление цепи 2.14. Резонанс токов 2.15. Понятие о круговых диаграммах 2.16. Расчет синусоидальных цепей с использованикм комплексных чисел 2.17. Изображение напряжений и токов комплексными числами и векторами на комплексной плоскости 2.18. Комплексные значения полных сопротивлений и проводимостей цепи. Закон Ома в комплексной форме 2.19. Законы Кирхгофа в коиплексной форме 2.20. Выражение мощности в комплексной форме 2.21. Расчет сложных цепей 2.22. Цепи, связанные взаимной индукцией
Глава VI

Глава VI. ЭЛЕКТРОМАГНИТНЫЕ УСТРОЙСТВА
А. МАГНИТНЫЕ ЦЕПИ С ПОСТОЯННОЙ МАГНИТОДВИЖУЩЕЙ СИЛОЙ

6.1. Понятие об электромагнитных устройствах и магнитных цепях 6.2. Основные величины, используемые при расчете и анализе магнитных цепей. Задачи расчета и анализа 6.3. Свойства ферромагнитных материалов 6.4. Допущения и особенности использования основных законов магнитных цепей при расчете и анализе 6.5. Неразветвленные магнитные цепи 6.6. Неразветвленные магнитные цепи с постоянными магнитами 6.7. Разветвленные магнитные цепи 6.8. Основы расчета намагничивающих обмоток 6.9. Тяговое усилие в электромагнитных устройствах

Глава VI. ЭЛЕКТРОМАГНИТНЫЕ УСТРОЙСТВА
Б. МАГНИТНЫЕ ЦЕПИ С ПЕРЕМЕННОЙ МАГНИТОДВИЖУЩЕЙ СИЛОЙ

6.10. Явления, происходящие в магнитных цепях электромагнитных устройств переменного тока, и некоторые их конструктивные особенности 6.11. Формы кривых ЭДС е, магнитного потока Ф, тока i имгновенной мощности ρ идеализированной обмотки 6. 12. Вольт-амперные характеристики идеализированной обмотки 6.13. Эквивалентный ток и векторная диаграмма идеализированной обмотки 6.14. Схема замещения идеализированной обмотки и параметры схемы замещения 6.15. Схема замещения, векторные диаграммы и мощности реальной обмотки с ферромагнитным магнитопроводом 6.16. Определение тока, мощностей, эквивалентных соротивлений и угла сдвига фаз между напряжением и током реальной обмотки 6.17. феррорезонансный стабилизатор напряжения

Глава VI. ЭЛЕКТРОМАГНИТНЫЕ УСТРОЙСТВА
В. МАГНИТНЫЕ ЦЕПИ С ПОСТОЯННОЙ И ПЕРЕМЕННОЙ МАГНИТОДВИЖУЩИМИ СИЛАМИ

6.18. Понятие о дросселях насыщения и магнитных усилителях 6.19. Устройство МУ 6.20. Принцип действия МУ 6.21. Соотношения между токами и характеристика управления МУ 6.22. Коэффициенты усиления МУ 6.23. Обратные связи в МУ 6.24. Смещение в МУ 6.25. Понятие о двухтактных и трехфазных МУ
Глава IX

Глава IX. МАШИНЫ ПОСТОЯННОГО ТОКА

9.1. Назначение и устройство машин постоянного тока 9.2. Краткие сведения об обмотках якорей. Принцип действия машин постоянного тока 9.3. ЭДС якоря и электромагнитный момент машин постоянного тока 9.4. Явление реакции якоря в машинах постоянного тока 9.5. Явление коммутации в машинах постоянного тока 9.6. Классификация генераторов постоянного тока по способу возбуждения. Схемы включения генераторов 9.7. Свойства и характеристики генераторов независимого возбуждения 9.8. Свойства и характеристики генераторов параллельного возбуждения 9.9. Свойства и характеристики генераторов смешанного возбуждения 9.10. Сравнительная оценка и технические данные генераторов постоянного тока 9.11. Классификация двигателей по способу возбуждения. Схемы включения двигателей и положительные направления частоты вращения, момента, токов и других величин 9.12. Зависимости токов от нагрузки двигателей. Соотношения между токами 9.13. Зависимости магнитного потока от тока якоря двигателей 9.14. Зависимости момента от тока якоря. Перегрузочная способность двигателей 9.15. Соотношение между напряжением, ЭДС и падением напряжения в сопротивлениях цепи якоря. Формула тока якоря 9.16. Естественные механические и электромеханические характеристики двигателей 9.17. Пуск двигателей 9.18. Регулирование частоты вращения двигателей 9.19. Тормозные режимы работы двигателей 9.20. Потери мощности и КПД машин постоянного тока 9.21. Сравнительная оценка и технические данные двигателей постоянного тока 9.22. Универсальные коллекторные двигатели 9.23. Микродвигатели постоянного тока
Глава X

Глава X.

10.1. Устройство асинхронного двигателя трехфазного тока 10.2. Вращающееся магнитное поле 10.3. Принцип действия асинхронного двигателя 10.4. ЭДС обмотки статора 10.5. ЭДС, частота тока ротора, скольжение 10.6. Индуктивные сопротивления обмоток статора и ротора 10.7. Ток и эквивалентная схема фазы обмотки ротора 10.8. Магнитодвижущие силы оьмоток статора и ротора. Ток обмотки статора 10.9. Электромагнитная мощность и потери в асинхронном двигателе 10.10. Момент, развиваемый двигателем 10.11. Схема замещения асинхронного двигателя 10.12. Механическая характеристика асинхронного двигателя 10.13. Паспортные данные двигателя. Расчет и построение механической характеристики 10.14. Пуск асинхронных двигателей 10.15. Двигатели с улучшенными пусковыми свойствами 10.16. Регулирование частоты вращения 10.17. Тормозные режимы работы 10.18. Энергетические показатели асинхронного двигателя 10.19. Однофазные асинхронные двигатели 10.20. Асинхронный тахогенератор 10.21. Сельсины 10.22. Вращающийся трансформатор 10.23. Понятие о линейном трехфазном асинхронном двигателе

Глава седьмая
ЭЛЕКТРИЧЕСКИЕ ИЗМЕРЕНИЯ И ПРИБОРЫ

7.5. ИЗМЕРЕНИЕ МОЩНОСТИ  И ЭНЕРГИИ В ЦЕПЯХ

ПЕРЕМЕННОГО ТОКА

Рис.   7.12.   Схема   включения ваттметра

7.5.1. Измерение активной мощности в цепях однофазного тока. Для измерения мощности Р служат ваттметры электродинамической системы; схема включения ваттметра изображена на рис. 7.12.

Неподвижная обмотка 1—1 при­бора называется токовой и включа­ется в цепь последовательно. Подвиж­ная обмотка 2 — 2 называется обмот­кой напряжения и включается в цепь параллельно.

Ток I2 в обмотке напряжения 2—2 пропорционален напряжению U, контролируемой цепи и совпадает с ним по фазе1, а ток I1 равен току I нагрузки. Момент, действующий на подвижную обмотку, равен

Mвp = CUI cos φ = CP,

где С — коэффициент пропорциональности.

Поскольку противодействующий момент Мпр пропорционален углу поворота α стрелки, отклонение стрелки пропорционально измеряемой активной мощности Р.


1 Ток совпадает по фазе с напряжением, потому что цепь обмотки напряжения ваттметра обладает практически чисто активным сопротивлением.


Для правильного включения ваттметра один из выводов токовой обмотки и один из выводов обмотки напряжения отмечают звездочками (*). Эти выводы, называемые генераторными, необходимо включать со стороны источника питания.

Следует отметить, что электродинамическими ваттметрами можно измерять также мощность в цепях постоянного тока.

7.5.2. Измерение активной и реактивной мощностей в цепях трехфазного тока. Для измерения мощности трехфазного приемника применяют различные схемы включения  ваттметров.

При симметричной нагрузке активную мощность Р можно измерить одним ваттметром, включенным по схемам рис. 7.13, а, б.

Общая мощность потребителя

Р = 3W,

где W— показание ваттметра.
Рис 7.13 Схемы включения ваттметров для измерения активной мощности в трехфазной сети одним (а, б) и тремя (в) ваттметрами

При несимметричной нагрузке мощность трехфазного приемника   можно   измерить   тремя   ваттметрами   (рис.   7.13, в). Общая мощность приемника в этом случае

P = W1 + W2 + W3.

В трехпроводных системах трехфазного тока при симметричной и несимметричной нагрузках и любом способе соединения приемников широко распространена схема измерения мощности двумя ваттметрами (рис. 7.14, а). На этой схеме токовые обмотки ваттметров включены в линейные провода А и В, а обмотки напряжения — на линейные напряжения UАС и UBC 1.


1 Токовые обмотки могут быть включены и в другие линейные провода, например в А и С. При этом параллельные обмотки ваттметров включаются на линейные Uав и Uсв.


Докажем, что сумма показаний ваттметров, включенных по схеме рис.   7.14, а,  равна  активной  мощности  Р трехфазного приемника.

Мгновенное значение общей мощности трехфазного приемника, соединенного звездой,

p = uAiA + uBiB + uCiC.

Так как

iA + iB + iC = 0,

то

iC = - (iA + iB)

Рис. 7.14. Схема включения двух ваттметров для измерения актив-
ной мощности в трехфазных сетях (а) и векторная диаграмма, пояс-
няющая измере-
ние активной мощности двумя ваттметрами (б)

Подставляя значение iС в выражение для р, получаем

р = uAiA + uBiB - uС(iA + iB) = (uA - uС) iA + (uB - uС) iB = uiA + uiB.

Выразив мгновенные значения u и i через их амплитуды, можно найти среднюю (активную) мощность:

 
1
T
T  
Pср = р dt,
  0  
которая составит
  /\   /\  
Р = UACIAcos(UAC, IA) + UBCIB cos( UBC, IB ) = W1 + W2.

Так как UAC, UBC, IA и IBсоответственно линейные напряжения и токи, то полученное выражение справедливо и при соединении потребителей треугольником.

Следовательно, сумма показаний двух ваттметров действительно равна активной мощности Р трехфазного приемника.

При симметричной нагрузке

IA = IB = IC, UАС = UBC = Uл .

Из векторной диаграммы (рис. 7.14, б) получаем, что угол α между векторами IA и UAC равен φ — 30°, а угол β между векторами IB и UBC составляет φ + 30°.

В рассматриваемом случае показания ваттметров можно выразить формулами

W1 = Uл Iл cos (φ - 30°);    W2 = Uл Iл cos (φ + 30°).

Рис. 7.15. Схема включения ваттметра для измерения реактивной мощности в трехфазной сети одним ваттметром (а) и векторная диаграмма (б)

Сумма показаний ваттметров

W1 + W2 = Uл Iл [cos (φ - 30°) + cos (φ + 30°)] = √3 Uл Iл cos φ.

По разности показаний ваттметров можно  определить реактивную мощность симметричной трехфазной системы:

W1 - W2 = Uл Iл [cos (φ - 30°) - cos (φ + 30°)] = Uл Iл sin φ = Q/√3.

Отсюда

Q = (W1 - W2)√3.

При симметричной активной нагрузке (φ = 0) показания обоих ваттметров будут одинаковыми. При смешанной симметричной нагрузке и φ > 60° показание одного из ваттметров будет отрицательным 1.


1 Ваттметры, как правило, снабжаются встроенным переключателем, позволяющим изменять фазу тока в одной из обмоток прибора (чаще всего токовой). Это устройство дает возможность производить отсчет показаний прибора при φ > 60°, когда стрелка отклоняется влево до упора.


При симметричной нагрузке реактивную мощность Q трехфазной системы можно измерить одним ваттметром (рис. 7.15, а). В этой схеме токовая обмотка включена в линейный провод А, а параллельная обмотка напряжения — на линейное напряжение UBC. Из векторной диаграммы (рис. 7.15, б) следует, что показания ваттметра

W = UBCIл cos (90 - φ) = Uл Iл sin φ.

Умножая показание ваттметра на √3, получаем значение реактивной мощности Q трехфазной сети при симметричной нагрузке.

7.5.3. Измерение электрической энергии в цепях переменного тока. Для измерения энергии в цепях переменного тока применяются однофазные и трехфазные счетчики индукционной системы. Схемы включения однофазных счетчиков для измерения активной энергии Wa в однофазной и трехфазной цепях аналогичны схемам включения ваттметров, представленных на рис. 7.12, 7.13.

Рис    7 16.   Измерение   активной   энергии   в   трехфазной   сети   трехэлемент-
ным (а) и двухэлемент-
ным (б) счетчиками

В трехфазных цепях активную энергию Wа измеряют трех или четырехэлементными трехфазными счетчиками. Трехэлементные счетчики конструктивно представляют собой три измерительные системы однофазных счетчиков, имеющих общую ось. Трехэлементные счетчики (рис. 7.16, а) используют в четырехпроводных цепях трехфазного тока.

Для измерения активной энергии в трехпроводниковых цепях применяют двухэлементные счетчики (рис. 7.16, б), объе­диняющие измерительные системы двух однофазных счетчиков. Обмотки этих систем включают по рассмотренной ранее схеме двух ваттметров (см. рис. 7.14, а).

Реактивную энергию Wр при симметричной нагрузке фаз трехпроводной сети можно измерить при помощи двух однофазных счетчиков, обмотки которых включены по схеме рис. 7.14. Значение Wp находят как разность показаний счетчиков, увеличенную в √3 раз. Кроме того, применяют специальные трехфазные счетчики реактивной энергии, используемые как при симметричной, так и при несимметричной нагрузках фаз.

 [an error occurred while processing this directive]