[an error occurred while processing this directive]
Все справочники Предисловие Введение
Глава I

Глава I. ЭЛЕКТРИЧЕСКИЕ ЦЕПИ ПОСТОЯННОГО ТОКА

1.1. Получение и области применений постоянного тока 1.2. Элементы электротехнических установок электрические цепи и схемы 1.3. Задачи расчета и анализа электрических цепей. Параметры, используемые при расчете и анализе 1.4. Некоторые условные обозначения и классификация электрических цепей. Понятие о двухполюсниках 1.5. Проводниковые и электроизоляционные материалы. Сопротивление проводников и электрическая прочность диэлектриков 1.6. Направления токов, напряжений и э.д.с., единицы их измерения 1.7. Некоторые особенности использования законов Ома и Кирхгофа при расчете и анализе электрических цепей 1.8. Нагревание элементов электрических цепей 1.9. Режимы работы элементов электрических цепей 1.10. Электрические цепи с одним источником энергии и пассивными (резистивными) элементами 1.11. Понятие об источнике тока 1.12. Неразветвленная электрическая цепь с одним источником энергии и активным приемником 1.13. Уравнение баланса мощностей электрических цепей 1.14. Разветвленные электрические схемы с несколькими источниками 1.15. Способы соединения источников электрической энергии 1.16. Нелинейные электрические цепи постоянного тока 1.17. Мостовые электрические цепи 1.18, Понятие об электрическом моделировании
Глава II

Глава II. ЭЛЕКТРИЧЕСКИЕ ЦЕПИ СИНУСОИДАЛЬНОГО ТОКА

2.1. Получение синусоидальной эдс. Основные соотношения 2.2. Действующее и среднее значения синусоидальных тока, эдс и напряжения 2.3 Векторные диаграммы 2.4. Цепь, содержащая резистивный элемент с активным сопротивлением r 2.5. Цепь, содержащая индуктивный элемент с индуктивностью L 2.6. Цепь, содержащая емкостный элемент с емкостью С 2.7. Цепь, содержащая катушку с активным сопротивлением r и индуктивностью L 2.8. Цепь, содержащая резистивный и емкостный элементы 2.9. Последовательное соединение r, L и С 2.10. Активная, реактивная и полная мощности цепи 2.11. Законы Кирхгофа в векторной форме 2.12. Резонанс напряжений 2.13. Разветвление цепи 2.14. Резонанс токов 2.15. Понятие о круговых диаграммах 2.16. Расчет синусоидальных цепей с использованикм комплексных чисел 2.17. Изображение напряжений и токов комплексными числами и векторами на комплексной плоскости 2.18. Комплексные значения полных сопротивлений и проводимостей цепи. Закон Ома в комплексной форме 2.19. Законы Кирхгофа в коиплексной форме 2.20. Выражение мощности в комплексной форме 2.21. Расчет сложных цепей 2.22. Цепи, связанные взаимной индукцией
Глава VI

Глава VI. ЭЛЕКТРОМАГНИТНЫЕ УСТРОЙСТВА
А. МАГНИТНЫЕ ЦЕПИ С ПОСТОЯННОЙ МАГНИТОДВИЖУЩЕЙ СИЛОЙ

6.1. Понятие об электромагнитных устройствах и магнитных цепях 6.2. Основные величины, используемые при расчете и анализе магнитных цепей. Задачи расчета и анализа 6.3. Свойства ферромагнитных материалов 6.4. Допущения и особенности использования основных законов магнитных цепей при расчете и анализе 6.5. Неразветвленные магнитные цепи 6.6. Неразветвленные магнитные цепи с постоянными магнитами 6.7. Разветвленные магнитные цепи 6.8. Основы расчета намагничивающих обмоток 6.9. Тяговое усилие в электромагнитных устройствах

Глава VI. ЭЛЕКТРОМАГНИТНЫЕ УСТРОЙСТВА
Б. МАГНИТНЫЕ ЦЕПИ С ПЕРЕМЕННОЙ МАГНИТОДВИЖУЩЕЙ СИЛОЙ

6.10. Явления, происходящие в магнитных цепях электромагнитных устройств переменного тока, и некоторые их конструктивные особенности 6.11. Формы кривых ЭДС е, магнитного потока Ф, тока i имгновенной мощности ρ идеализированной обмотки 6. 12. Вольт-амперные характеристики идеализированной обмотки 6.13. Эквивалентный ток и векторная диаграмма идеализированной обмотки 6.14. Схема замещения идеализированной обмотки и параметры схемы замещения 6.15. Схема замещения, векторные диаграммы и мощности реальной обмотки с ферромагнитным магнитопроводом 6.16. Определение тока, мощностей, эквивалентных соротивлений и угла сдвига фаз между напряжением и током реальной обмотки 6.17. феррорезонансный стабилизатор напряжения

Глава VI. ЭЛЕКТРОМАГНИТНЫЕ УСТРОЙСТВА
В. МАГНИТНЫЕ ЦЕПИ С ПОСТОЯННОЙ И ПЕРЕМЕННОЙ МАГНИТОДВИЖУЩИМИ СИЛАМИ

6.18. Понятие о дросселях насыщения и магнитных усилителях 6.19. Устройство МУ 6.20. Принцип действия МУ 6.21. Соотношения между токами и характеристика управления МУ 6.22. Коэффициенты усиления МУ 6.23. Обратные связи в МУ 6.24. Смещение в МУ 6.25. Понятие о двухтактных и трехфазных МУ
Глава IX

Глава IX. МАШИНЫ ПОСТОЯННОГО ТОКА

9.1. Назначение и устройство машин постоянного тока 9.2. Краткие сведения об обмотках якорей. Принцип действия машин постоянного тока 9.3. ЭДС якоря и электромагнитный момент машин постоянного тока 9.4. Явление реакции якоря в машинах постоянного тока 9.5. Явление коммутации в машинах постоянного тока 9.6. Классификация генераторов постоянного тока по способу возбуждения. Схемы включения генераторов 9.7. Свойства и характеристики генераторов независимого возбуждения 9.8. Свойства и характеристики генераторов параллельного возбуждения 9.9. Свойства и характеристики генераторов смешанного возбуждения 9.10. Сравнительная оценка и технические данные генераторов постоянного тока 9.11. Классификация двигателей по способу возбуждения. Схемы включения двигателей и положительные направления частоты вращения, момента, токов и других величин 9.12. Зависимости токов от нагрузки двигателей. Соотношения между токами 9.13. Зависимости магнитного потока от тока якоря двигателей 9.14. Зависимости момента от тока якоря. Перегрузочная способность двигателей 9.15. Соотношение между напряжением, ЭДС и падением напряжения в сопротивлениях цепи якоря. Формула тока якоря 9.16. Естественные механические и электромеханические характеристики двигателей 9.17. Пуск двигателей 9.18. Регулирование частоты вращения двигателей 9.19. Тормозные режимы работы двигателей 9.20. Потери мощности и КПД машин постоянного тока 9.21. Сравнительная оценка и технические данные двигателей постоянного тока 9.22. Универсальные коллекторные двигатели 9.23. Микродвигатели постоянного тока
Глава X

Глава X.

10.1. Устройство асинхронного двигателя трехфазного тока 10.2. Вращающееся магнитное поле 10.3. Принцип действия асинхронного двигателя 10.4. ЭДС обмотки статора 10.5. ЭДС, частота тока ротора, скольжение 10.6. Индуктивные сопротивления обмоток статора и ротора 10.7. Ток и эквивалентная схема фазы обмотки ротора 10.8. Магнитодвижущие силы оьмоток статора и ротора. Ток обмотки статора 10.9. Электромагнитная мощность и потери в асинхронном двигателе 10.10. Момент, развиваемый двигателем 10.11. Схема замещения асинхронного двигателя 10.12. Механическая характеристика асинхронного двигателя 10.13. Паспортные данные двигателя. Расчет и построение механической характеристики 10.14. Пуск асинхронных двигателей 10.15. Двигатели с улучшенными пусковыми свойствами 10.16. Регулирование частоты вращения 10.17. Тормозные режимы работы 10.18. Энергетические показатели асинхронного двигателя 10.19. Однофазные асинхронные двигатели 10.20. Асинхронный тахогенератор 10.21. Сельсины 10.22. Вращающийся трансформатор 10.23. Понятие о линейном трехфазном асинхронном двигателе

Глава четвертая
ПЕРЕХОДНЫЕ ПРОЦЕССЫ В ЛИНЕЙНЫХ ЭЛЕКТРИЧЕСКИХ ЦЕПЯХ

4.10. ЭЛЕКТРИЧЕСКОЕ МОДЕЛИРОВАНИЕ ПЕРЕХОДНЫХ ПРОЦЕССОВ МЕХАНИЧЕСКИХ И ДРУГИХ СИСТЕМ

Разработка новых сложных механических, гидравлических и других систем связана со значительными трудностями, состоящими в том, что нет гарантии получения требуемых расчетных величин и нет возможности провести экспериментальные исследования системы, поскольку она не выполнена в натуре. Поэтому при разработке той или иной системы прибегают к созданию физической модели системы. Результаты исследования модели позволяют выявить действительные характеристики и дать рекомендации для корректировки параметров системы с целью получения оптимальных характеристик. Наиболее простыми и универсальными моделями для исследования как стационарных, так и переходных режимов механических и других систем являются электрические модели, представляющие собой электрические цепи с резистивными, емкостными и индуктивными элементами, в которых аналогами исследуемых величин являются ток, напряжение, индуктивность и емкость. Выполнение электрической модели и проведение ее исследования не связано скакими-либо техническими трудностями и не требует значительных затрат. Создание же механической модели связано со значительными трудностями и капитальными затратами.

Рис. 4.10. Механическая система (а) и ее электрическая модель (б)

Электрическая модель будет соответствовать реальной системе, если математическое описание модели и системы одинаковое.

Рассмотрим электрическую модель механической системы, изображенной на рис.    4.10, а.    Механическая система состоит из тела 2 с массой т, пружины 1 и воздушного демпфера 3, состоящего из поршня, расположенною в цилиндре. Допустим, тело 2 удерживалось в неподвижном состоянии внешней силой, когда пружина 1 была ненапряженной. После удаления внешней силы под действием силы тяжести система придет в движение. Тело начнет опускаться, пружина — растягиваться, появится демпфирующая сила демпфера. Возникнет переходный процесс, который постепенно затухнет и система снова окажется в неподвижном состоянии. Электрической моделью рассмотренной механической системы является электрическая цепь с резистивным, индуктивным и емкостным элементами, изображенная на рис. 4.10, б, так как дифференциальное уравнение переходного процесса этой цепи при подключении ее к источнику с постоянным напряжением аналогично дифференциальному уравнению переходного процесса механической системы.

Уравнение движения механической системы имеет вид

F - F1 - F2 = m dv/dt,

где F сила тяжести массы; F1 = k1x- упругая сила пружины; F2 = k2v — сила, развиваемая демпфером; х - перемещение тела от начального положения; vскорость тела. Таким образом, для механической системы

(4.57)

F = k1x + k2v + m dv/dt.

Уравнение переходного процесса электрической цепи

(4.58)

U = uC + ur + uL = 1/C  i dt + ir + L di/dt.

Из сравнения уравнений (4.57) и (4.58) следует, что напряжение U, приложенное к цепи, является аналогом силы F, приложенной к механической системе, напряжение uC на емкости —аналогом силы, развиваемой пружиной, ток i цепи — аналогом скорости u, urаналогом силы, возникающей в демпфере, индуктивность Lаналогом массы мела m.

Таким образом, благодаря единству уравнений электрической цепи и механической системы исследование явлений в механической системе может быть произведено с помощью исследования переходных процессов электрической цепи. Характер переходного процесса механической системы, так же как и ее электрической модели, может быть апериодическим или колебательным. В механической системе он определяется соотношением массы тела, упругости пружины и демпфирующей силы демпфера, в электрической модели, как это доказано в § 4.9, — соотношением параметров цепи r, L, С.

Результаты решения уравнения электрической цепи будут отображать характер и длительность переходного процесса механической системы, если соблюдены соответствующие соотношения между параметрами механической системы и ее моделью — электрической цепью. Соотношения устанавливаются посредством масштабных коэффициентов. Значения и размерность масштабных коэффициентов можно установить, если разделить почленно уравнение (4.58) на уравнение (4.57).

В результате получим

[ U = [mF] В/Н;   [ uC = [mF] В/Н;
F k1x
[ ri = [mk2mv ] Ом • м/(Н • c) • A • c/м = B/H;
k2v
[ Ldi/dt ] = [ L   di/dt ] = [mmmdv/dt]Гн • м/(Н • с) • А • с2/(с • м) = В/Н.
m dv/dt m dv/dt

Выразив в уравнении (4.57) соответствующие величины через масштабные коэффициенты, получим уравнение электрической цени с учетом масштабных коэффициентов

U = uC + ri + Ldi/dt .
mF mF mk2mv mmmdv/dt
 [an error occurred while processing this directive]