[an error occurred while processing this directive]
Все справочники Предисловие Введение
Глава I

Глава I. ЭЛЕКТРИЧЕСКИЕ ЦЕПИ ПОСТОЯННОГО ТОКА

1.1. Получение и области применений постоянного тока 1.2. Элементы электротехнических установок электрические цепи и схемы 1.3. Задачи расчета и анализа электрических цепей. Параметры, используемые при расчете и анализе 1.4. Некоторые условные обозначения и классификация электрических цепей. Понятие о двухполюсниках 1.5. Проводниковые и электроизоляционные материалы. Сопротивление проводников и электрическая прочность диэлектриков 1.6. Направления токов, напряжений и э.д.с., единицы их измерения 1.7. Некоторые особенности использования законов Ома и Кирхгофа при расчете и анализе электрических цепей 1.8. Нагревание элементов электрических цепей 1.9. Режимы работы элементов электрических цепей 1.10. Электрические цепи с одним источником энергии и пассивными (резистивными) элементами 1.11. Понятие об источнике тока 1.12. Неразветвленная электрическая цепь с одним источником энергии и активным приемником 1.13. Уравнение баланса мощностей электрических цепей 1.14. Разветвленные электрические схемы с несколькими источниками 1.15. Способы соединения источников электрической энергии 1.16. Нелинейные электрические цепи постоянного тока 1.17. Мостовые электрические цепи 1.18, Понятие об электрическом моделировании
Глава II

Глава II. ЭЛЕКТРИЧЕСКИЕ ЦЕПИ СИНУСОИДАЛЬНОГО ТОКА

2.1. Получение синусоидальной эдс. Основные соотношения 2.2. Действующее и среднее значения синусоидальных тока, эдс и напряжения 2.3 Векторные диаграммы 2.4. Цепь, содержащая резистивный элемент с активным сопротивлением r 2.5. Цепь, содержащая индуктивный элемент с индуктивностью L 2.6. Цепь, содержащая емкостный элемент с емкостью С 2.7. Цепь, содержащая катушку с активным сопротивлением r и индуктивностью L 2.8. Цепь, содержащая резистивный и емкостный элементы 2.9. Последовательное соединение r, L и С 2.10. Активная, реактивная и полная мощности цепи 2.11. Законы Кирхгофа в векторной форме 2.12. Резонанс напряжений 2.13. Разветвление цепи 2.14. Резонанс токов 2.15. Понятие о круговых диаграммах 2.16. Расчет синусоидальных цепей с использованикм комплексных чисел 2.17. Изображение напряжений и токов комплексными числами и векторами на комплексной плоскости 2.18. Комплексные значения полных сопротивлений и проводимостей цепи. Закон Ома в комплексной форме 2.19. Законы Кирхгофа в коиплексной форме 2.20. Выражение мощности в комплексной форме 2.21. Расчет сложных цепей 2.22. Цепи, связанные взаимной индукцией
Глава VI

Глава VI. ЭЛЕКТРОМАГНИТНЫЕ УСТРОЙСТВА
А. МАГНИТНЫЕ ЦЕПИ С ПОСТОЯННОЙ МАГНИТОДВИЖУЩЕЙ СИЛОЙ

6.1. Понятие об электромагнитных устройствах и магнитных цепях 6.2. Основные величины, используемые при расчете и анализе магнитных цепей. Задачи расчета и анализа 6.3. Свойства ферромагнитных материалов 6.4. Допущения и особенности использования основных законов магнитных цепей при расчете и анализе 6.5. Неразветвленные магнитные цепи 6.6. Неразветвленные магнитные цепи с постоянными магнитами 6.7. Разветвленные магнитные цепи 6.8. Основы расчета намагничивающих обмоток 6.9. Тяговое усилие в электромагнитных устройствах

Глава VI. ЭЛЕКТРОМАГНИТНЫЕ УСТРОЙСТВА
Б. МАГНИТНЫЕ ЦЕПИ С ПЕРЕМЕННОЙ МАГНИТОДВИЖУЩЕЙ СИЛОЙ

6.10. Явления, происходящие в магнитных цепях электромагнитных устройств переменного тока, и некоторые их конструктивные особенности 6.11. Формы кривых ЭДС е, магнитного потока Ф, тока i имгновенной мощности ρ идеализированной обмотки 6. 12. Вольт-амперные характеристики идеализированной обмотки 6.13. Эквивалентный ток и векторная диаграмма идеализированной обмотки 6.14. Схема замещения идеализированной обмотки и параметры схемы замещения 6.15. Схема замещения, векторные диаграммы и мощности реальной обмотки с ферромагнитным магнитопроводом 6.16. Определение тока, мощностей, эквивалентных соротивлений и угла сдвига фаз между напряжением и током реальной обмотки 6.17. феррорезонансный стабилизатор напряжения

Глава VI. ЭЛЕКТРОМАГНИТНЫЕ УСТРОЙСТВА
В. МАГНИТНЫЕ ЦЕПИ С ПОСТОЯННОЙ И ПЕРЕМЕННОЙ МАГНИТОДВИЖУЩИМИ СИЛАМИ

6.18. Понятие о дросселях насыщения и магнитных усилителях 6.19. Устройство МУ 6.20. Принцип действия МУ 6.21. Соотношения между токами и характеристика управления МУ 6.22. Коэффициенты усиления МУ 6.23. Обратные связи в МУ 6.24. Смещение в МУ 6.25. Понятие о двухтактных и трехфазных МУ
Глава IX

Глава IX. МАШИНЫ ПОСТОЯННОГО ТОКА

9.1. Назначение и устройство машин постоянного тока 9.2. Краткие сведения об обмотках якорей. Принцип действия машин постоянного тока 9.3. ЭДС якоря и электромагнитный момент машин постоянного тока 9.4. Явление реакции якоря в машинах постоянного тока 9.5. Явление коммутации в машинах постоянного тока 9.6. Классификация генераторов постоянного тока по способу возбуждения. Схемы включения генераторов 9.7. Свойства и характеристики генераторов независимого возбуждения 9.8. Свойства и характеристики генераторов параллельного возбуждения 9.9. Свойства и характеристики генераторов смешанного возбуждения 9.10. Сравнительная оценка и технические данные генераторов постоянного тока 9.11. Классификация двигателей по способу возбуждения. Схемы включения двигателей и положительные направления частоты вращения, момента, токов и других величин 9.12. Зависимости токов от нагрузки двигателей. Соотношения между токами 9.13. Зависимости магнитного потока от тока якоря двигателей 9.14. Зависимости момента от тока якоря. Перегрузочная способность двигателей 9.15. Соотношение между напряжением, ЭДС и падением напряжения в сопротивлениях цепи якоря. Формула тока якоря 9.16. Естественные механические и электромеханические характеристики двигателей 9.17. Пуск двигателей 9.18. Регулирование частоты вращения двигателей 9.19. Тормозные режимы работы двигателей 9.20. Потери мощности и КПД машин постоянного тока 9.21. Сравнительная оценка и технические данные двигателей постоянного тока 9.22. Универсальные коллекторные двигатели 9.23. Микродвигатели постоянного тока
Глава X

Глава X.

10.1. Устройство асинхронного двигателя трехфазного тока 10.2. Вращающееся магнитное поле 10.3. Принцип действия асинхронного двигателя 10.4. ЭДС обмотки статора 10.5. ЭДС, частота тока ротора, скольжение 10.6. Индуктивные сопротивления обмоток статора и ротора 10.7. Ток и эквивалентная схема фазы обмотки ротора 10.8. Магнитодвижущие силы оьмоток статора и ротора. Ток обмотки статора 10.9. Электромагнитная мощность и потери в асинхронном двигателе 10.10. Момент, развиваемый двигателем 10.11. Схема замещения асинхронного двигателя 10.12. Механическая характеристика асинхронного двигателя 10.13. Паспортные данные двигателя. Расчет и построение механической характеристики 10.14. Пуск асинхронных двигателей 10.15. Двигатели с улучшенными пусковыми свойствами 10.16. Регулирование частоты вращения 10.17. Тормозные режимы работы 10.18. Энергетические показатели асинхронного двигателя 10.19. Однофазные асинхронные двигатели 10.20. Асинхронный тахогенератор 10.21. Сельсины 10.22. Вращающийся трансформатор 10.23. Понятие о линейном трехфазном асинхронном двигателе

Глава вторая
ЭЛЕКТРИЧЕСКИЕ ЦЕПИ СИНУСОИДАЛЬНОГО ТОКА

2.6. ЦЕПЬ, СОДЕРЖАЩАЯ ЕМКОСТНЫЙ ЭЛЕМЕНТ С ЕМКОСТЬЮ С

В радиоэлектронных устройствах емкость является элементом колебательных контуров, фильтров, элементом связи между контурами и т. п. В силовых установках конденсаторы используют для улучшения коэффициента мощности, как элемент колебательного контура высокочастотных установок для закалки и плавки металлов. В любой электрической установке емкости образуются между проводами, проводами и землей и другими элементами токоведущих конструкций.

При большой протяженности проводов емкость может оказаться значительной, и при расчете цепей даже низкой, например промышленной, частоты ее необходимо учитывать. В высокочастотных цепях даже небольшие емкости оказывают существенное влияние на режим работы цепи и их необходимо учитывать.

Ток в цепи с емкостью (рис. 2.8, а) представляет собой движение зарядов к ее обкладкам:

(2.10)

i = dq/dt.

Выразив в (2.10) заряд q через емкость С и напряжение на емкости иС, из выражения

С = q/uС

получим

i = CduС /dt.

Напряжение на емкости изменяется синусоидально:

(2.11)

и = иС = Um sin ωt.

Тогда ток в цепи

i = C dUm sin ωt .
dt

Взяв производную, получим мгновенное значение тока в цепи с емкостью:

(2.12)

i = ωCUm cos ωt = Im sin (ωt + π/2).

Сравнивая выражения (2.11) и (2.12), можно сделать вывод, что ток в емкости опережает напряжение на емкости по фазе на 90°.

Векторная   диаграмма   цепи   с   емкостью   приведена   на рис. 2.8, б, а график мгновенных значений тока и напряжения — на рис. 2.8, в.

Рис. 2.8. Электрическая цепь, содержащая емкостный элемент с ем­костью С (а), ее векторная диаграмма (б) и графики мгновенных значений u, i, p (в)

Напряжение и ток в цепи с емкостью, как следует из выражения (2.12), связаны соотношением

Im = ωCUm ,

откуда
(2.13)
Im = Um .
1/ωC

Разделив левую и правую части (2.13) на √2, получим закон Ома для цепи с емкостью:

(2.14)
I = U = U ,
1/ωC хС

где хС = 1/ωC — емкостное сопротивление, Ом.

Таким образом, напряжение на емкости в цепи переменного тока может быть выражено через произведение тока на емкостное сопротивление:

U = UC = IхC .

Мгновенное значение мощности р в цепи с емкостью равно произведению мгновенных значений напряжения и тока:

Р = ui = Um sin ωtIm sin (ωt + π/2) = UmIm sin 2ωt = UI sin 2ωt = Pm sin 2ωt.
2

Из полученного выражения вытекает, что мгновенная мощность изменяется по закону синуса с частотой, в 2 раза большей частоты тока, и ее амплитудное значение

Рт = UI.

Среднее значение мощности за период (активная мощность), как видно из графика рис. 2.8, в, равно нулю:

 
1
T
T  
P = ui dt = 0.
  0  

Для пояснения энергетических процессов в цепях с емкостью воспользуемся графиками, изображенными на рис. 2.8, в. В первую четверть периода, в интервале времени между точками 1 и 2, напряжение на конденсаторе возрастает, происходит заряд конденсатора: электрическая энергия из сети поступает к конденсатору и накапливается в нем в виде энергии электрического поля. Накопленная энергия равна заштрихованной площади, ограниченной кривой р(t) (отмечена знаком « + »), и составляет

  T/4   T/4
UmIm
2
 
Um2C
2
 
WC = ui dt = sin 2ωt dt = .
  0   0    

В следующую четверть периода, в интервале времени между точками 2 и 3, ток изменяет направление, а напряжение на конденсаторе убывает. Происходит разряд конденсатора: энергия электрического поля возвращается в сеть. Энергия, возвращенная в сеть, равна площади, ограниченной кривой р (t) (отмечена знаком « - »).

Из графиков рис. 2.8, в видно, что площади, определяющие запасенную и отданную энергии, равны. Следовательно, энергия, накопленная в электрическом поле емкости в первую четверть периода, полностью возвращается в сеть во вторую четверть периода.

В следующую четверть периода, в интервале времени между точками 3 и 4, изменяется полярность напряжения на обкладках конденсатора. Происходит заряд конденсатора: электрическая энергия из сети поступает к конденсатору и накапливается в нем в виде энергии электрического поля. В последнюю четверть периода, в интервале между точками 4 и 5, происходит разряд конденсатора: энергия электрического поля возвращается в сеть.

Таким образом, в цепи с емкостью, так же как и в цепи с индуктивностью, происходит непрерывный периодический процесс обмена энергией между сетью и конденсатором.

 [an error occurred while processing this directive]