[an error occurred while processing this directive]
Все справочники Предисловие Введение
Глава I

Глава I. ЭЛЕКТРИЧЕСКИЕ ЦЕПИ ПОСТОЯННОГО ТОКА

1.1. Получение и области применений постоянного тока 1.2. Элементы электротехнических установок электрические цепи и схемы 1.3. Задачи расчета и анализа электрических цепей. Параметры, используемые при расчете и анализе 1.4. Некоторые условные обозначения и классификация электрических цепей. Понятие о двухполюсниках 1.5. Проводниковые и электроизоляционные материалы. Сопротивление проводников и электрическая прочность диэлектриков 1.6. Направления токов, напряжений и э.д.с., единицы их измерения 1.7. Некоторые особенности использования законов Ома и Кирхгофа при расчете и анализе электрических цепей 1.8. Нагревание элементов электрических цепей 1.9. Режимы работы элементов электрических цепей 1.10. Электрические цепи с одним источником энергии и пассивными (резистивными) элементами 1.11. Понятие об источнике тока 1.12. Неразветвленная электрическая цепь с одним источником энергии и активным приемником 1.13. Уравнение баланса мощностей электрических цепей 1.14. Разветвленные электрические схемы с несколькими источниками 1.15. Способы соединения источников электрической энергии 1.16. Нелинейные электрические цепи постоянного тока 1.17. Мостовые электрические цепи 1.18, Понятие об электрическом моделировании
Глава II

Глава II. ЭЛЕКТРИЧЕСКИЕ ЦЕПИ СИНУСОИДАЛЬНОГО ТОКА

2.1. Получение синусоидальной эдс. Основные соотношения 2.2. Действующее и среднее значения синусоидальных тока, эдс и напряжения 2.3 Векторные диаграммы 2.4. Цепь, содержащая резистивный элемент с активным сопротивлением r 2.5. Цепь, содержащая индуктивный элемент с индуктивностью L 2.6. Цепь, содержащая емкостный элемент с емкостью С 2.7. Цепь, содержащая катушку с активным сопротивлением r и индуктивностью L 2.8. Цепь, содержащая резистивный и емкостный элементы 2.9. Последовательное соединение r, L и С 2.10. Активная, реактивная и полная мощности цепи 2.11. Законы Кирхгофа в векторной форме 2.12. Резонанс напряжений 2.13. Разветвление цепи 2.14. Резонанс токов 2.15. Понятие о круговых диаграммах 2.16. Расчет синусоидальных цепей с использованикм комплексных чисел 2.17. Изображение напряжений и токов комплексными числами и векторами на комплексной плоскости 2.18. Комплексные значения полных сопротивлений и проводимостей цепи. Закон Ома в комплексной форме 2.19. Законы Кирхгофа в коиплексной форме 2.20. Выражение мощности в комплексной форме 2.21. Расчет сложных цепей 2.22. Цепи, связанные взаимной индукцией
Глава VI

Глава VI. ЭЛЕКТРОМАГНИТНЫЕ УСТРОЙСТВА
А. МАГНИТНЫЕ ЦЕПИ С ПОСТОЯННОЙ МАГНИТОДВИЖУЩЕЙ СИЛОЙ

6.1. Понятие об электромагнитных устройствах и магнитных цепях 6.2. Основные величины, используемые при расчете и анализе магнитных цепей. Задачи расчета и анализа 6.3. Свойства ферромагнитных материалов 6.4. Допущения и особенности использования основных законов магнитных цепей при расчете и анализе 6.5. Неразветвленные магнитные цепи 6.6. Неразветвленные магнитные цепи с постоянными магнитами 6.7. Разветвленные магнитные цепи 6.8. Основы расчета намагничивающих обмоток 6.9. Тяговое усилие в электромагнитных устройствах

Глава VI. ЭЛЕКТРОМАГНИТНЫЕ УСТРОЙСТВА
Б. МАГНИТНЫЕ ЦЕПИ С ПЕРЕМЕННОЙ МАГНИТОДВИЖУЩЕЙ СИЛОЙ

6.10. Явления, происходящие в магнитных цепях электромагнитных устройств переменного тока, и некоторые их конструктивные особенности 6.11. Формы кривых ЭДС е, магнитного потока Ф, тока i имгновенной мощности ρ идеализированной обмотки 6. 12. Вольт-амперные характеристики идеализированной обмотки 6.13. Эквивалентный ток и векторная диаграмма идеализированной обмотки 6.14. Схема замещения идеализированной обмотки и параметры схемы замещения 6.15. Схема замещения, векторные диаграммы и мощности реальной обмотки с ферромагнитным магнитопроводом 6.16. Определение тока, мощностей, эквивалентных соротивлений и угла сдвига фаз между напряжением и током реальной обмотки 6.17. феррорезонансный стабилизатор напряжения

Глава VI. ЭЛЕКТРОМАГНИТНЫЕ УСТРОЙСТВА
В. МАГНИТНЫЕ ЦЕПИ С ПОСТОЯННОЙ И ПЕРЕМЕННОЙ МАГНИТОДВИЖУЩИМИ СИЛАМИ

6.18. Понятие о дросселях насыщения и магнитных усилителях 6.19. Устройство МУ 6.20. Принцип действия МУ 6.21. Соотношения между токами и характеристика управления МУ 6.22. Коэффициенты усиления МУ 6.23. Обратные связи в МУ 6.24. Смещение в МУ 6.25. Понятие о двухтактных и трехфазных МУ
Глава IX

Глава IX. МАШИНЫ ПОСТОЯННОГО ТОКА

9.1. Назначение и устройство машин постоянного тока 9.2. Краткие сведения об обмотках якорей. Принцип действия машин постоянного тока 9.3. ЭДС якоря и электромагнитный момент машин постоянного тока 9.4. Явление реакции якоря в машинах постоянного тока 9.5. Явление коммутации в машинах постоянного тока 9.6. Классификация генераторов постоянного тока по способу возбуждения. Схемы включения генераторов 9.7. Свойства и характеристики генераторов независимого возбуждения 9.8. Свойства и характеристики генераторов параллельного возбуждения 9.9. Свойства и характеристики генераторов смешанного возбуждения 9.10. Сравнительная оценка и технические данные генераторов постоянного тока 9.11. Классификация двигателей по способу возбуждения. Схемы включения двигателей и положительные направления частоты вращения, момента, токов и других величин 9.12. Зависимости токов от нагрузки двигателей. Соотношения между токами 9.13. Зависимости магнитного потока от тока якоря двигателей 9.14. Зависимости момента от тока якоря. Перегрузочная способность двигателей 9.15. Соотношение между напряжением, ЭДС и падением напряжения в сопротивлениях цепи якоря. Формула тока якоря 9.16. Естественные механические и электромеханические характеристики двигателей 9.17. Пуск двигателей 9.18. Регулирование частоты вращения двигателей 9.19. Тормозные режимы работы двигателей 9.20. Потери мощности и КПД машин постоянного тока 9.21. Сравнительная оценка и технические данные двигателей постоянного тока 9.22. Универсальные коллекторные двигатели 9.23. Микродвигатели постоянного тока
Глава X

Глава X.

10.1. Устройство асинхронного двигателя трехфазного тока 10.2. Вращающееся магнитное поле 10.3. Принцип действия асинхронного двигателя 10.4. ЭДС обмотки статора 10.5. ЭДС, частота тока ротора, скольжение 10.6. Индуктивные сопротивления обмоток статора и ротора 10.7. Ток и эквивалентная схема фазы обмотки ротора 10.8. Магнитодвижущие силы оьмоток статора и ротора. Ток обмотки статора 10.9. Электромагнитная мощность и потери в асинхронном двигателе 10.10. Момент, развиваемый двигателем 10.11. Схема замещения асинхронного двигателя 10.12. Механическая характеристика асинхронного двигателя 10.13. Паспортные данные двигателя. Расчет и построение механической характеристики 10.14. Пуск асинхронных двигателей 10.15. Двигатели с улучшенными пусковыми свойствами 10.16. Регулирование частоты вращения 10.17. Тормозные режимы работы 10.18. Энергетические показатели асинхронного двигателя 10.19. Однофазные асинхронные двигатели 10.20. Асинхронный тахогенератор 10.21. Сельсины 10.22. Вращающийся трансформатор 10.23. Понятие о линейном трехфазном асинхронном двигателе

Глава шестая
ЭЛЕКТРОМАГНИТНЫЕ УСТРОЙСТВА
Б. МАГНИТНЫЕ  ЦЕПИ С ПЕРЕМЕННОЙ МАГНИТОДВИЖУЩЕЙ СИЛОЙ

6.14. СХЕМА ЗАМЕЩЕНИЯ ИДЕАЛИЗИРОВАННОЙ ОБМОТКИ И ПАРАМЕТРЫ СХЕМЫ ЗАМЕЩЕНИЯ

Имея векторную диаграмму (см. рис. 6.28) и соотношение (6.28), нетрудно представить себе, что идеализированной обмотке соответствует схема замещения, приведенная на рис. 6.30. Индуктивный элемент х0 в схеме замещения, обусловлен реактивным током Iр и мощностью Q', резистивный элемент r0 — активными током Iа и мощностью Р' = ΔРc.

Очевидно, мощности идеализированной обмотки могут быть выражены через сопротивления схемы замещения следующим образом:

(6.37)

Р' = ΔРc = Iа2r0 = U'2/r0, Q' = Ip2х0 = U'2/х0.

Так как реактивный ток Iр = U'/x0, особенно при наличии воздушного зазора в магнитопроводе, значительно превышает активный ток Iа = U'/r0, то индуктивное сопротивление х0 оказывается намного меньше активного сопротивления r0; очевидно, полное сопротивление z0 схемы замещения идеализированной обмотки
z0 = 1 = 1 х0.
y0 (1/r0)2 + (1/х0)2

Используя методику определения тока I, изложенную в § 6.13, можно вычислить токи при различных напряжениях U' и воздушных зазорах lδ и построить в. а. х. U'(I), связывающие действующее значения тока и напряжения. Указанные в. а. х. будут аналогичны по виду в. а. х. на рис. 6.26 и будут иметь указанные ранее особенности.

Рис. 6.30. Схема замещения идеализированной обмотки
Рис. 6.31. Зависимость z0 (U') ≈ ≈ x0(U') идеализированной обмотки
Рис. 6.32. Зависимость Ip(lδ) и
x
0(lδ) z0(lδ) идеализированной обмотки

Имея в. а. х. идеализированной обмотки и пользуясь законом Ома, согласно которому z0 = U'/I x0, можно построить график зависимости полного сопротивления схемы замещения идеализированной   обмотки   от   напряжения   на   ее   выводах Z0(U') X0(U'). Такой график для одного из воздушных зазоров приведен на рис. 6.31.

Как видно, в отличие от электромагнитных устройств с постоянной МДС, у которых сопротивление обмотки не зависит от напряжения на ее выводах, у электромагнитных устройств с переменной МДС полное сопротивление обмотки (равное примерно ее индуктивному сопротивлению) с увеличением на­пряжения изменяется. Пока напряжение относительно невелико и материал магнитопровода не насыщен, сопротивление обмотки остается примерно постоянным; по мере увеличения напряжения и степени насыщения ферромагнитного материала сопротивление значительно уменьшается.

Представляет интерес характер изменения тока и сопротивления идеализированной обмотки при увеличении воздушного зазора в магнитопроводе.

Пренебрегая активной составляющей тока ввиду его малости, можно написать

(6.38)
I Ip= Ip,c + Iδ = Ip,c + Bmlδ /2wμ0.

Сопротивление катушки будет

(6.39)
z0 ≈ x0= U'/Ip = U' .
Ip,c + Bmlδ /2wμ0

С увеличением воздушного зазора при U' = const все члены в правых частях выражений (6.38) и (6.39), кроме длины воздушного зазора lδ, остаются постоянными. Графики зависимостей Iр(lδ) ≈ I(lδ) и х0(lδ) ≈ z0(lδ), построенные в соответствии с выражениями (6.38) и (6.39), приведены на рис. 6.32.

В отличие от электромагнитных устройств с постоянной МДС, у которых с увеличением воздушного зазора при U = const сопротивление и ток обмотки остаются постоянными, у электромагнитных устройств с переменной МДС увеличение воздушного зазора приводит к значительному уменьшению со­противления и увеличению тока.

Последнее во многих случаях является весьма нежелательным, так как приводит к увеличению габаритных размеров обмотки, потребляемой индуктивной мощности и к ухудшению энергетических показателей электромагнитных устройств. Поэтому, например, в трансформаторах, магнитных усилителях и двигателях переменного тока стремятся воздушные зазоры свести к минимуму. У электромагнитов различных электротехнических аппаратов, у которых воздушный зазор необходим, исходя из принципа их действия (тормозные электромагниты, контакторы, реле и др.), приходится специально рассчитывать обмотку по нагреванию с учетом повышенных значений начальных токов, возникающих в момент подключения обмотки к источнику, когда подвижная часть магнитопровода — якорь — еще не притянулась к неподвижной части магнитопровода и воздушный зазор не ликвидирован. Для таких устройств в справочной литературе указывается обычно наибольшее допустимое число включений в час, на которое рассчитана обмотка, исходя из ее дополнительного нагревания начальными токами.

Однако зависимость тока и сопротивления обмотки переменного тока от воздушного зазора не всегда оказывается нежелательной.

Указанная зависимость широко используется в устройствах автоматики и измерительной техники, примером чему могут служить индуктивные конечные и путевые выключатели, индуктивные датчики для измерения неэлектрических величин.

В § 6.13 было сказано, что показатель степени n в (6.32) для многих ферромагнитных материалов близок к двум. В этом случае при f = const ΔРc = kU'2 и согласно (6.37) получим

r0 = U'2 =U'2 = 1 ;
ΔРc kU2 k

Таким образом, сопротивление r0 схемы замещения почти постоянно и зависимость U'(Ia) близка к линейной.

 [an error occurred while processing this directive]