[an error occurred while processing this directive]
Все справочники Предисловие Введение
Глава I

Глава I. ЭЛЕКТРИЧЕСКИЕ ЦЕПИ ПОСТОЯННОГО ТОКА

1.1. Получение и области применений постоянного тока 1.2. Элементы электротехнических установок электрические цепи и схемы 1.3. Задачи расчета и анализа электрических цепей. Параметры, используемые при расчете и анализе 1.4. Некоторые условные обозначения и классификация электрических цепей. Понятие о двухполюсниках 1.5. Проводниковые и электроизоляционные материалы. Сопротивление проводников и электрическая прочность диэлектриков 1.6. Направления токов, напряжений и э.д.с., единицы их измерения 1.7. Некоторые особенности использования законов Ома и Кирхгофа при расчете и анализе электрических цепей 1.8. Нагревание элементов электрических цепей 1.9. Режимы работы элементов электрических цепей 1.10. Электрические цепи с одним источником энергии и пассивными (резистивными) элементами 1.11. Понятие об источнике тока 1.12. Неразветвленная электрическая цепь с одним источником энергии и активным приемником 1.13. Уравнение баланса мощностей электрических цепей 1.14. Разветвленные электрические схемы с несколькими источниками 1.15. Способы соединения источников электрической энергии 1.16. Нелинейные электрические цепи постоянного тока 1.17. Мостовые электрические цепи 1.18, Понятие об электрическом моделировании
Глава II

Глава II. ЭЛЕКТРИЧЕСКИЕ ЦЕПИ СИНУСОИДАЛЬНОГО ТОКА

2.1. Получение синусоидальной эдс. Основные соотношения 2.2. Действующее и среднее значения синусоидальных тока, эдс и напряжения 2.3 Векторные диаграммы 2.4. Цепь, содержащая резистивный элемент с активным сопротивлением r 2.5. Цепь, содержащая индуктивный элемент с индуктивностью L 2.6. Цепь, содержащая емкостный элемент с емкостью С 2.7. Цепь, содержащая катушку с активным сопротивлением r и индуктивностью L 2.8. Цепь, содержащая резистивный и емкостный элементы 2.9. Последовательное соединение r, L и С 2.10. Активная, реактивная и полная мощности цепи 2.11. Законы Кирхгофа в векторной форме 2.12. Резонанс напряжений 2.13. Разветвление цепи 2.14. Резонанс токов 2.15. Понятие о круговых диаграммах 2.16. Расчет синусоидальных цепей с использованикм комплексных чисел 2.17. Изображение напряжений и токов комплексными числами и векторами на комплексной плоскости 2.18. Комплексные значения полных сопротивлений и проводимостей цепи. Закон Ома в комплексной форме 2.19. Законы Кирхгофа в коиплексной форме 2.20. Выражение мощности в комплексной форме 2.21. Расчет сложных цепей 2.22. Цепи, связанные взаимной индукцией
Глава VI

Глава VI. ЭЛЕКТРОМАГНИТНЫЕ УСТРОЙСТВА
А. МАГНИТНЫЕ ЦЕПИ С ПОСТОЯННОЙ МАГНИТОДВИЖУЩЕЙ СИЛОЙ

6.1. Понятие об электромагнитных устройствах и магнитных цепях 6.2. Основные величины, используемые при расчете и анализе магнитных цепей. Задачи расчета и анализа 6.3. Свойства ферромагнитных материалов 6.4. Допущения и особенности использования основных законов магнитных цепей при расчете и анализе 6.5. Неразветвленные магнитные цепи 6.6. Неразветвленные магнитные цепи с постоянными магнитами 6.7. Разветвленные магнитные цепи 6.8. Основы расчета намагничивающих обмоток 6.9. Тяговое усилие в электромагнитных устройствах

Глава VI. ЭЛЕКТРОМАГНИТНЫЕ УСТРОЙСТВА
Б. МАГНИТНЫЕ ЦЕПИ С ПЕРЕМЕННОЙ МАГНИТОДВИЖУЩЕЙ СИЛОЙ

6.10. Явления, происходящие в магнитных цепях электромагнитных устройств переменного тока, и некоторые их конструктивные особенности 6.11. Формы кривых ЭДС е, магнитного потока Ф, тока i имгновенной мощности ρ идеализированной обмотки 6. 12. Вольт-амперные характеристики идеализированной обмотки 6.13. Эквивалентный ток и векторная диаграмма идеализированной обмотки 6.14. Схема замещения идеализированной обмотки и параметры схемы замещения 6.15. Схема замещения, векторные диаграммы и мощности реальной обмотки с ферромагнитным магнитопроводом 6.16. Определение тока, мощностей, эквивалентных соротивлений и угла сдвига фаз между напряжением и током реальной обмотки 6.17. феррорезонансный стабилизатор напряжения

Глава VI. ЭЛЕКТРОМАГНИТНЫЕ УСТРОЙСТВА
В. МАГНИТНЫЕ ЦЕПИ С ПОСТОЯННОЙ И ПЕРЕМЕННОЙ МАГНИТОДВИЖУЩИМИ СИЛАМИ

6.18. Понятие о дросселях насыщения и магнитных усилителях 6.19. Устройство МУ 6.20. Принцип действия МУ 6.21. Соотношения между токами и характеристика управления МУ 6.22. Коэффициенты усиления МУ 6.23. Обратные связи в МУ 6.24. Смещение в МУ 6.25. Понятие о двухтактных и трехфазных МУ
Глава IX

Глава IX. МАШИНЫ ПОСТОЯННОГО ТОКА

9.1. Назначение и устройство машин постоянного тока 9.2. Краткие сведения об обмотках якорей. Принцип действия машин постоянного тока 9.3. ЭДС якоря и электромагнитный момент машин постоянного тока 9.4. Явление реакции якоря в машинах постоянного тока 9.5. Явление коммутации в машинах постоянного тока 9.6. Классификация генераторов постоянного тока по способу возбуждения. Схемы включения генераторов 9.7. Свойства и характеристики генераторов независимого возбуждения 9.8. Свойства и характеристики генераторов параллельного возбуждения 9.9. Свойства и характеристики генераторов смешанного возбуждения 9.10. Сравнительная оценка и технические данные генераторов постоянного тока 9.11. Классификация двигателей по способу возбуждения. Схемы включения двигателей и положительные направления частоты вращения, момента, токов и других величин 9.12. Зависимости токов от нагрузки двигателей. Соотношения между токами 9.13. Зависимости магнитного потока от тока якоря двигателей 9.14. Зависимости момента от тока якоря. Перегрузочная способность двигателей 9.15. Соотношение между напряжением, ЭДС и падением напряжения в сопротивлениях цепи якоря. Формула тока якоря 9.16. Естественные механические и электромеханические характеристики двигателей 9.17. Пуск двигателей 9.18. Регулирование частоты вращения двигателей 9.19. Тормозные режимы работы двигателей 9.20. Потери мощности и КПД машин постоянного тока 9.21. Сравнительная оценка и технические данные двигателей постоянного тока 9.22. Универсальные коллекторные двигатели 9.23. Микродвигатели постоянного тока
Глава X

Глава X.

10.1. Устройство асинхронного двигателя трехфазного тока 10.2. Вращающееся магнитное поле 10.3. Принцип действия асинхронного двигателя 10.4. ЭДС обмотки статора 10.5. ЭДС, частота тока ротора, скольжение 10.6. Индуктивные сопротивления обмоток статора и ротора 10.7. Ток и эквивалентная схема фазы обмотки ротора 10.8. Магнитодвижущие силы оьмоток статора и ротора. Ток обмотки статора 10.9. Электромагнитная мощность и потери в асинхронном двигателе 10.10. Момент, развиваемый двигателем 10.11. Схема замещения асинхронного двигателя 10.12. Механическая характеристика асинхронного двигателя 10.13. Паспортные данные двигателя. Расчет и построение механической характеристики 10.14. Пуск асинхронных двигателей 10.15. Двигатели с улучшенными пусковыми свойствами 10.16. Регулирование частоты вращения 10.17. Тормозные режимы работы 10.18. Энергетические показатели асинхронного двигателя 10.19. Однофазные асинхронные двигатели 10.20. Асинхронный тахогенератор 10.21. Сельсины 10.22. Вращающийся трансформатор 10.23. Понятие о линейном трехфазном асинхронном двигателе

Глава первая
ЭЛЕКТРИЧЕСКИЕ ЦЕПИ ПОСТОЯННОГО ТОКА

1.16. НЕЛИНЕЙНЫЕ ЭЛЕКТРИЧЕСКИЕ ЦЕПИ ПОСТОЯННОГО ТОКА

1.16.1. Нелинейные элементы электрических цепей, их вольт-амперные характеристики и сопротивления. Нелинейным элементом электрической цепи считается элемент, значения параметров которого зависят от значения тока данного элемента или напряжения на его выводах.

К нелинейным элементам электрических целей относятся разнообразные электронные, полупроводниковые и ионные приборы, устройства, содержащие намагничивающие обмотки с ферромагнитными магнитопроводами (при переменном токе), лампы накаливания, электрическая дуга и др.

Рис. 1.21. Примеры вольт-амперных характеристик:

а — линейного элемента; б — лампы накаливания; в - полупроводнико- вого диода; г - транзистора (при различных токах базы), д - терморезистора, е - стабилитрона

Нелинейные элементы получают в настоящее время все более широкое распространение, так как они дают возможность решать многие технические задачи. Так, с помощью нелинейных элементов можно осуществить преобразование переменного тока в постоянный, усиление электрических сигналов, генерирование электрических сигналов различной формы, стабилизацию тока и напряжения, изменение формы анналов, вычислительные операции и т д. Нелинейные элементы широко используются в радиотехнических устройствах, в устройствах промышленной электроники, автоматики, измерительной и вычислительной техники.

Важнейшей характеристикой нелинейных элементов является вольт-амперная характеристика (в. а. х.), представляющая собой зависимость между током нелинейного элемента и напряжением на его выводах: I(U) или U(I).

Зависимость между током I и напряжением U любого пассивного элемента электрической цепи подчиняется закону Ома, согласно которому I = U/r. Поскольку у линейных элементов с изменением тока или напряжения сопротивление остается постоянным, их в. а. х. не отличаются от прямой (рис.  1.21, а).

Рис.  1.22,   К расчету электрической цепи с нелинейным элементом графо- аналитическим методом

У нелинейных элементов в. а. х. весьма разнообразны и для некоторых из них даны на рис. 1.21,бе. Там же приведены условные графические обозначения соответствующих элементов. Общее условное обозначение любого нелинейного резистивного элемента показано на рис. 1.22, а.

Имея в. а. х. нелинейного элемента, можно определить его сопротивления при любых значениях тока или напряжения. Различают два вида сопротивлений нелинейных элементов: статическое и дифференциальное.

Статическое сопротивление дает представление о соотношении конечных значений напряжения и тока нелинейного элемента и определяется в соответствии с законом Ома. Например, для точки А в. а. х. (рис. 1.21,б) статическое сопротивление

rs = U1 = mu tg α,
I1 mi
где mu и mi — масштабы напряжения и тока.

Дифференциальное сопротивление позволяет судить о соотношении приращений напряжения и тока и определяется следующим образом:

rd = dU1 = mu tg β,
dI1 mi

К нелинейным электрическим цепям применимы основные законы электрических цепей, т. е. закон Ома и законы Кирхгофа. Однако расчет нелинейных цепей значительно труднее, чем линейных, Объясняется это тем, что кроме токов и напряжений, подлежащих обычно определению, неизвестными являются также зависящие от них сопротивления нелинейных элементов.

Для расчета нелинейных электрических цепей применяется с большинстве случаев графоаналитический метод. Однако если в предполагаемом диапазоне изменения тока или напряжения нелинейного элемента его в. а. х. можно заменить прямой линией, то расчет можно производить и аналитическим методом.

Следует отметить, что к той части электрической цепи, которая содержит линейные элементы, применимы все методы расчета и преобразования электрических цепей, рассмотренные ранее.

1.16.2. Графоаналитический метод расчета нелинейных электрических цепей. Предположим, что имеется электрическая цепь, схема которой приведена на рис. 1.22, а. В этой цепи нелинейный резистивный элемент r соединен с активным линейным двухполюсником А, который может быть любой сложности.

Расчет данной электрической цепи следует начать с замены активного двухполюсника эквивалентным генератором с параметрами Еэ = Ux и r (рис. 1.22,б) согласно методу эквивалентного генератора. Для дальнейшего расчета целесообразно воспользоваться методом графического решения двух уравнений с двумя неизвестными. Одним из уравнений следует считать зависимость I(U) нелинейного элемента, которой соответствует его в. а. х., приведенная на рис. 1.22, в. Другое уравнение, связывающее те же ток I и напряжение U, нетрудно получить по второму закону Кирхгофа. Применив его к цепи с эквивалентным генератором (рис. 1.22,б), получим

I = Еэ - U = f(U).
r

Поскольку зависимость I = f(U) линейная, график I = f(U) может быть построен по двум точкам (рис. 1.22,в). Например; в режиме холостого хода эквивалентного генератора I = 0 и U = Ux = Еэ; в режиме короткого замыкания U = 0 и I = Iк = Еэ /r .

Очевидно, искомые ток I и напряжение U определяются точкой Б пересечения в. а. х. I (U) нелинейного элемента и графика I = f(U) эквивалентного генератора.

Если к двухполюснику будут подключены два нелинейных элемента r1 и r2, соединенные последовательно (рис 1.23, а), то перед расчетом согласно методике, изложенной выше, необходимо заменить их эквивалентным нелинейным элементом rэ (рис 1.23, б) с эквивалентной в. а. х. I (U) (рис. 1.23, в). Построение эквивалентной в. а. х. I(U) производили на основании следующего соображения: при любом значении тока I напряжение U равно сумме напряжений U1 и U2 нелинейных элементов (рис. 1.23, а), т. е.

Рис.   1.23.  
К   построению   в.а.х. электри- ческой   цепи   при последова- тельном соединении нелинейных элементов
(1.42)

U = U1 + U2.

Задавшись несколькими значениями тока I, по в. а. х. I(U1I(U2) нелинейных элементов r1 и r2 находят соответствующие напряжения U1 и U2, после чего согласно выражению (1.42) определяют напряжение U и строят в. а. х. I(U).

На рис. 1.23, в показано в качестве примера определение при токе I напряжения Uодной из точек (А) в. а. х. I(U).

Когда двухполюсник представляет собой источник с заданным напряжением, после построения в. а. х. I(U) можно при любом напряжении U найти ток I, а затем с помощью в. а. х. I(U1) и I(U2)напряжения U1 и U2.

При параллельном соединении двух нелинейных элементов (рис. 1.24) для построения в. а. х. I(U)эквивалентного нелинейного элемента rэ (рис. 1.25) необходимо воспользоваться тем, что при любом значении напряжения U токи связаны соотношением

(1.43)

I = I1 + I2.

Задавшись несколькими значениями напряжения U, по в. а. х. I1(U) и I2(U) (рис. 1.25) нелинейных элементов r1 и r2 находят соответствующие токи I1 и I2, после чего согласно (1.43) определяют ток I и строят в. а. х. I(U).

При смешанном соединении нелинейных элементов следует снача­ла построить ВАХ участка с параллельным соединением элементов. После этого можно перейти к построению ВАХ всей цепи. Имея в распоряжении все ВАХ, нетрудно определять токи и напряжения всех элементов цени.

1.16.3. Аналитический метод расчета нелинейных электриче­ских цепей. Предположим, что имеется некоторый нелинейный элемент, в. а. х. которого приведена на рис. 1.26, а. Если данный элемент должен работать на линейном участке cd в. а. х., то для расчета и анализа можно использовать аналитический метод.

Рис. 1.24. Параллельное соединение нелинейных элементов
Рис. 1.25. К построению в. а. х. электрической цепи при параллельном соединении нелинейных элементов
Рис. 1.26. К расчету электрической цепи с нелинейным элементом аналитическим методом

Чтобы выяснить зависимость между напряжением и током участка cd и построить схему замещения нелинейного элемента, работающего на данном участке, продлим его до пересечения в точке а с осью абсцисс и будем считать, что в точке пересечения напряжение U равно некоторой ЭДС Е. Для рис. 1.26, а справедливо следующее очевидное соотношение:

(1.44)

Ob = Oa + ab = Oa + bx tgβ.

Выразив в (1.44) отрезки через соответствующие электротехнические величины и масштабы напряжения и тока, получим

Ux /mu = E/mu + Ix /mi tgβ.

После умножения на масштаб напряжения будем иметь

(1.45)
Ux = E + Ix тu = Е + Ix rd,
mi
где rd — дифференциальное сопротивление нелинейного элемента на участке cd его в. а. х.

Полученному уравнению (1.45) согласно второму закону Кирхгофа соответствует схема замещения amb (рис. 1.26,б) нелинейного элемента, работающего на линейном участке cd.

Допустим, что нелинейный элемент получает питание от эквивалентного генератора с параметрами Eэ и r (рис. 1.26,б), заменяющего  некоторый  активный  двухполюсник.  Тогда  по второму закону Кирхгофа можно написать

Eэ - E = Ix (r + rd ),

откуда
(1.46)
Ix = Eэ - E
r + rd

Используя (1.45) и (1.46), нетрудно решать многие задачи, связанные с расчетом и анализом нелинейной электрической цепи. Например, по (1.46) можно определить ток Ix , а по (1.45) - напряжение Ux при заданных Eэ, r и rd .

Если графическое определение ЭДС E вызывает затруднение, можно найти ее, воспользовавшись выражением (1.45) и подставив в него известные координаты одной из точек участка cd.

 [an error occurred while processing this directive]