[an error occurred while processing this directive]
Все справочники Предисловие Введение
Глава I

Глава I. ЭЛЕКТРИЧЕСКИЕ ЦЕПИ ПОСТОЯННОГО ТОКА

1.1. Получение и области применений постоянного тока 1.2. Элементы электротехнических установок электрические цепи и схемы 1.3. Задачи расчета и анализа электрических цепей. Параметры, используемые при расчете и анализе 1.4. Некоторые условные обозначения и классификация электрических цепей. Понятие о двухполюсниках 1.5. Проводниковые и электроизоляционные материалы. Сопротивление проводников и электрическая прочность диэлектриков 1.6. Направления токов, напряжений и э.д.с., единицы их измерения 1.7. Некоторые особенности использования законов Ома и Кирхгофа при расчете и анализе электрических цепей 1.8. Нагревание элементов электрических цепей 1.9. Режимы работы элементов электрических цепей 1.10. Электрические цепи с одним источником энергии и пассивными (резистивными) элементами 1.11. Понятие об источнике тока 1.12. Неразветвленная электрическая цепь с одним источником энергии и активным приемником 1.13. Уравнение баланса мощностей электрических цепей 1.14. Разветвленные электрические схемы с несколькими источниками 1.15. Способы соединения источников электрической энергии 1.16. Нелинейные электрические цепи постоянного тока 1.17. Мостовые электрические цепи 1.18, Понятие об электрическом моделировании
Глава II

Глава II. ЭЛЕКТРИЧЕСКИЕ ЦЕПИ СИНУСОИДАЛЬНОГО ТОКА

2.1. Получение синусоидальной эдс. Основные соотношения 2.2. Действующее и среднее значения синусоидальных тока, эдс и напряжения 2.3 Векторные диаграммы 2.4. Цепь, содержащая резистивный элемент с активным сопротивлением r 2.5. Цепь, содержащая индуктивный элемент с индуктивностью L 2.6. Цепь, содержащая емкостный элемент с емкостью С 2.7. Цепь, содержащая катушку с активным сопротивлением r и индуктивностью L 2.8. Цепь, содержащая резистивный и емкостный элементы 2.9. Последовательное соединение r, L и С 2.10. Активная, реактивная и полная мощности цепи 2.11. Законы Кирхгофа в векторной форме 2.12. Резонанс напряжений 2.13. Разветвление цепи 2.14. Резонанс токов 2.15. Понятие о круговых диаграммах 2.16. Расчет синусоидальных цепей с использованикм комплексных чисел 2.17. Изображение напряжений и токов комплексными числами и векторами на комплексной плоскости 2.18. Комплексные значения полных сопротивлений и проводимостей цепи. Закон Ома в комплексной форме 2.19. Законы Кирхгофа в коиплексной форме 2.20. Выражение мощности в комплексной форме 2.21. Расчет сложных цепей 2.22. Цепи, связанные взаимной индукцией
Глава VI

Глава VI. ЭЛЕКТРОМАГНИТНЫЕ УСТРОЙСТВА
А. МАГНИТНЫЕ ЦЕПИ С ПОСТОЯННОЙ МАГНИТОДВИЖУЩЕЙ СИЛОЙ

6.1. Понятие об электромагнитных устройствах и магнитных цепях 6.2. Основные величины, используемые при расчете и анализе магнитных цепей. Задачи расчета и анализа 6.3. Свойства ферромагнитных материалов 6.4. Допущения и особенности использования основных законов магнитных цепей при расчете и анализе 6.5. Неразветвленные магнитные цепи 6.6. Неразветвленные магнитные цепи с постоянными магнитами 6.7. Разветвленные магнитные цепи 6.8. Основы расчета намагничивающих обмоток 6.9. Тяговое усилие в электромагнитных устройствах

Глава VI. ЭЛЕКТРОМАГНИТНЫЕ УСТРОЙСТВА
Б. МАГНИТНЫЕ ЦЕПИ С ПЕРЕМЕННОЙ МАГНИТОДВИЖУЩЕЙ СИЛОЙ

6.10. Явления, происходящие в магнитных цепях электромагнитных устройств переменного тока, и некоторые их конструктивные особенности 6.11. Формы кривых ЭДС е, магнитного потока Ф, тока i имгновенной мощности ρ идеализированной обмотки 6. 12. Вольт-амперные характеристики идеализированной обмотки 6.13. Эквивалентный ток и векторная диаграмма идеализированной обмотки 6.14. Схема замещения идеализированной обмотки и параметры схемы замещения 6.15. Схема замещения, векторные диаграммы и мощности реальной обмотки с ферромагнитным магнитопроводом 6.16. Определение тока, мощностей, эквивалентных соротивлений и угла сдвига фаз между напряжением и током реальной обмотки 6.17. феррорезонансный стабилизатор напряжения

Глава VI. ЭЛЕКТРОМАГНИТНЫЕ УСТРОЙСТВА
В. МАГНИТНЫЕ ЦЕПИ С ПОСТОЯННОЙ И ПЕРЕМЕННОЙ МАГНИТОДВИЖУЩИМИ СИЛАМИ

6.18. Понятие о дросселях насыщения и магнитных усилителях 6.19. Устройство МУ 6.20. Принцип действия МУ 6.21. Соотношения между токами и характеристика управления МУ 6.22. Коэффициенты усиления МУ 6.23. Обратные связи в МУ 6.24. Смещение в МУ 6.25. Понятие о двухтактных и трехфазных МУ
Глава IX

Глава IX. МАШИНЫ ПОСТОЯННОГО ТОКА

9.1. Назначение и устройство машин постоянного тока 9.2. Краткие сведения об обмотках якорей. Принцип действия машин постоянного тока 9.3. ЭДС якоря и электромагнитный момент машин постоянного тока 9.4. Явление реакции якоря в машинах постоянного тока 9.5. Явление коммутации в машинах постоянного тока 9.6. Классификация генераторов постоянного тока по способу возбуждения. Схемы включения генераторов 9.7. Свойства и характеристики генераторов независимого возбуждения 9.8. Свойства и характеристики генераторов параллельного возбуждения 9.9. Свойства и характеристики генераторов смешанного возбуждения 9.10. Сравнительная оценка и технические данные генераторов постоянного тока 9.11. Классификация двигателей по способу возбуждения. Схемы включения двигателей и положительные направления частоты вращения, момента, токов и других величин 9.12. Зависимости токов от нагрузки двигателей. Соотношения между токами 9.13. Зависимости магнитного потока от тока якоря двигателей 9.14. Зависимости момента от тока якоря. Перегрузочная способность двигателей 9.15. Соотношение между напряжением, ЭДС и падением напряжения в сопротивлениях цепи якоря. Формула тока якоря 9.16. Естественные механические и электромеханические характеристики двигателей 9.17. Пуск двигателей 9.18. Регулирование частоты вращения двигателей 9.19. Тормозные режимы работы двигателей 9.20. Потери мощности и КПД машин постоянного тока 9.21. Сравнительная оценка и технические данные двигателей постоянного тока 9.22. Универсальные коллекторные двигатели 9.23. Микродвигатели постоянного тока
Глава X

Глава X.

10.1. Устройство асинхронного двигателя трехфазного тока 10.2. Вращающееся магнитное поле 10.3. Принцип действия асинхронного двигателя 10.4. ЭДС обмотки статора 10.5. ЭДС, частота тока ротора, скольжение 10.6. Индуктивные сопротивления обмоток статора и ротора 10.7. Ток и эквивалентная схема фазы обмотки ротора 10.8. Магнитодвижущие силы оьмоток статора и ротора. Ток обмотки статора 10.9. Электромагнитная мощность и потери в асинхронном двигателе 10.10. Момент, развиваемый двигателем 10.11. Схема замещения асинхронного двигателя 10.12. Механическая характеристика асинхронного двигателя 10.13. Паспортные данные двигателя. Расчет и построение механической характеристики 10.14. Пуск асинхронных двигателей 10.15. Двигатели с улучшенными пусковыми свойствами 10.16. Регулирование частоты вращения 10.17. Тормозные режимы работы 10.18. Энергетические показатели асинхронного двигателя 10.19. Однофазные асинхронные двигатели 10.20. Асинхронный тахогенератор 10.21. Сельсины 10.22. Вращающийся трансформатор 10.23. Понятие о линейном трехфазном асинхронном двигателе

Глава   девятая
МАШИНЫ  ПОСТОЯННОГО ТОКА

9.8. СВОЙСТВА И  ХАРАКТЕРИСТИКИ  ГЕНЕРАТОРОВ ПАРАЛЛЕЛЬНОГО ВОЗБУЖДЕНИЯ

9.8.1. Характеристика холостого хода и процесс самовозбуждения. Как видно из рис. 9.16, от якоря генератора параллельного возбуждения получают питание приемник электрической энергии и обмотка возбуждения Ш1 = Ш2. Согласно первому закону Кирхгофа

Iя = I + Iв.

Мощность Рв и ток Iв обмотки возбуждения невелики. Обычно Рв,ном ≈ (0,02÷0,05) Рном и Iв,ном ≈ (0,02÷0,05) х Iном, где Рном и Iном— номинальные мощность и ток генератора; Рв,ном и Iв,ном — мощность и ток возбуждения при номинальном режиме работы генератора.

При холостом ходе I = 0 и в обмотке якоря возникает весьма небольшой ток Iя = Iв. На основании второго закона Кирхгофа при холостом ходе U = Е — Iяrя = Е — Iвrя .

Падением напряжения Iвrя ввиду его малости можно прене­бречь и считать, что при холостом ходе U = Е. Так как при хо­лостом ходе ток Iя = Iв невелик, реакцию якоря можно не учитывать. В этом случае, как и для генератора независимого возбуждения,

Ф = f2(Iвwв) = f1(Iв);

Е = kenf1(Iв).

Очевидно, связь между Ф и Iв, а также между Е и Iв зависит от параметров генератора и совершенно не зависит от того, откуда получает питание обмотка возбуждения. Поэтому генератор параллельного возбуждения имеет характеристику холостого хода Е(Iв) (рис. 9.17), подобную характеристике генератора независимого возбуждения.

Особенностью генератора параллельного возбуждения является то, что он работает по принципу самовозбуждения. Для того чтобы генератор возбудился, должны быть выполнены два условия:

1) генератор должен иметь магнитный поток остаточного намагничивания Ф0;

2) обмотка возбуждения должна быть подключена к якорю так, чтобы ею создавался магнитный поток, совпадающий по направлению с потоком остаточного намагничивания.

Рис. 9.16. Схема  включения генератора параллельного возбуждения
Рис. 9.16. К пояснению процесса самовозбуждения генератора параллельного возбуждения

Процесс самовозбуждения можно пояснить следующим образом. Магнитным потоком Ф0 в обмотке якоря индуктируется ЭДС Е0, под действием которой в обмотке возбуждения возникает ток Iв0,  возбуждаюший магнитный поток Ф1 > Ф0. Потоком Ф1 > Ф0 в обмотке якоря индуктируется ЭДС Е1 > Е0, под действием которой в обмотке возбуждения возникает ток Iв1 > Iв0,   вызывающий   магнитный поток Ф2 > Ф1, и т. д.

Чтоб решить вопрос о том, до каких установившихся значений ЭДС Е и тока Iв возбудится генератор, запишем по второму закону Кирхгофа уравнение для переходного процесса самовозбуждения

(9.13)
е = iв(rя + rп + rр) + Lя diя + Lв diв .
dt dt

где Lя и Lв — индуктивность обмоток якоря и возбуждения; Lя diя/dt и Lв diв/dt— ЭДС самоиндукции, возникающие в обмотках якоря и возбуждения вследствие изменения тока iв.

Когда процесс самовозбуждения закончится, diв/dt = 0,
iв = Iв, e = E  и вместо (9.13) можно написать

Е = Iв (rя + rп + rр) = Iв Σr

Таким образом, процесс самовозбуждения закончится тогда, когда ЭДС станет равной падению напряжения в сопротивлениях цепи якоря и обмотки возбуждения.

Установившиеся значения Е и Iв при заданном сопротивлении rр нетрудно найти графическим путем, для чего необходимо знать характеристику холостого хода Е(Iв) и вольт-амперную характеристику Iв Σr = f(Iв) (рис. 9.17). При равных значениях Σr получим соответственно несколько вольт-амперных характеристик Iв Σr = f(Iв). Устано­вившиеся значения Е и Iв определяются точками пересечения хaрактеристики холостого хода и вольт-амперных характеристик.

9.8.2. Внешняя характеристика. На основании второго закона Кирхгофа (рис. 9.16)
U = Е - Iяrя. Но Iя = I + Iв, поэтому U = Е - Irя - Iвrя .

Падением напряжения Iвrя можно пренебречь. Тогда

U = E - Irя.

После замены в последнем уравнении напряжения согласно выражению U = Irп и решения относительно тока получим

(9.14)
I = Е .
rя + rп

Как видно, уравнение внешней характеристики и формула для определения тока нагрузки имеют такой же вид, как для генератора независимого возбуждения. Однако напряжение U и ток I генератора параллельного возбуждения будут изменяться по-иному при изменении сопротивления rп. Объясняется это тем, что у генератора параллельного возбуждения ЭДС не остается постоянной. Действительно, изменение сопротивления rп будет приводить к изменению тока I и напряжения U. Но так как

Iв = U .
rв + rp

а  Е = f(Iв), то при этом будет изменяться также ЭДС Е. При холостом ходе генератора (rп = ∞, I = 0)

U = Ux = E;    Iв = U .
rв + rp

Предположим, что при холостом ходе значения Е и Iв определяются точкой А (см. рис. 9.17). Поскольку ферромагнитный материал магнитной цепи насыщен, сначала при уменьшении сопротивления rп числитель в (9.14) уменьшается медленнее знаменателя и ток I возрастает до Imax (рис. 9.18); напряжение U снижается как из-за увеличения падения напряжения Irя , так и вследствие уменьшения ЭДС. При некотором сопротивлении rп ток возбуждения уменьшится до значения Iв3 и ферромагнитный материал окажется ненасыщенным. Поэтому при дальнейшем уменьшении rп числитель в (9.14) будет уменьшаться быстрее знаменателя и ток I будет спадать. Несмотря на уменьшение падения напряжения Irя напряжение будет продолжать снижаться из-за значительного уменьшения ЭДС Е. Таким образом, при уменьшении сопротивления приемника rп напряжение U непрерывно снижается, ток I сначала возрастает, при некотором сопротивлении rп достигает максимального значения Imax , а при дальнейшем уменьшении rп уменьшается. Максимальный ток Imax составляет Imax = (2 ÷ 3) Iном. Внешняя характеристика 1 генератора параллельного возбуждения приведена на рис. 9.18. Там же дана для сравнения характеристика 2 генератора независимого возбуждения.

Рис. 9.18 Внешние характеристики генераторов параллельного (1) и независимого (2) возбуждения

Из-за снижения ЭДС напряжение генератора параллельного возбуждения уменьшается при увеличении нагрузки в большей степени, чем у генератора независимого возбуждения. Это является одним из его недостатков. Обычно

Δuном = Uх - Uном 100 = 10 ÷ 15%.
Uм

При коротком замыкании (rп = 0) U = 0 и Iв = 0; в якоре будет индуктироваться небольшая ЭДС Е0 от потока остаточного намагничивания, поэтому ток короткого замыкания I = Iк = Е0/rя не может быть большим. Обычно Iк < Iном. Следует, однако, обратить внимание на то, что при внезапном коротком замыкании в течение некоторого времени может существовать ток, во много раз превышающий номинальный. Это объясняется инерционностью, вносимой обмоткой возбуждения, из-за которой магнитный поток и ЭДС якоря не могут мгновенно уменьшиться до значений, определяемых остаточным намагничиванием

9.8.3. Регулировочная характеристика. Регулировочная характеристика генератора параллельного возбуждения не отличается по виду от характеристик генератора независимого возбуждения (см. рис. 9.15). Однако поскольку у генератора параллельного возбуждения напряжение U меняется в больших пределах, необходимо в больших пределах изменять и ток возбуждения с помощью реостата rр.

 [an error occurred while processing this directive]