[an error occurred while processing this directive]
Все справочники Предисловие Введение
Глава I

Глава I. ЭЛЕКТРИЧЕСКИЕ ЦЕПИ ПОСТОЯННОГО ТОКА

1.1. Получение и области применений постоянного тока 1.2. Элементы электротехнических установок электрические цепи и схемы 1.3. Задачи расчета и анализа электрических цепей. Параметры, используемые при расчете и анализе 1.4. Некоторые условные обозначения и классификация электрических цепей. Понятие о двухполюсниках 1.5. Проводниковые и электроизоляционные материалы. Сопротивление проводников и электрическая прочность диэлектриков 1.6. Направления токов, напряжений и э.д.с., единицы их измерения 1.7. Некоторые особенности использования законов Ома и Кирхгофа при расчете и анализе электрических цепей 1.8. Нагревание элементов электрических цепей 1.9. Режимы работы элементов электрических цепей 1.10. Электрические цепи с одним источником энергии и пассивными (резистивными) элементами 1.11. Понятие об источнике тока 1.12. Неразветвленная электрическая цепь с одним источником энергии и активным приемником 1.13. Уравнение баланса мощностей электрических цепей 1.14. Разветвленные электрические схемы с несколькими источниками 1.15. Способы соединения источников электрической энергии 1.16. Нелинейные электрические цепи постоянного тока 1.17. Мостовые электрические цепи 1.18, Понятие об электрическом моделировании
Глава II

Глава II. ЭЛЕКТРИЧЕСКИЕ ЦЕПИ СИНУСОИДАЛЬНОГО ТОКА

2.1. Получение синусоидальной эдс. Основные соотношения 2.2. Действующее и среднее значения синусоидальных тока, эдс и напряжения 2.3 Векторные диаграммы 2.4. Цепь, содержащая резистивный элемент с активным сопротивлением r 2.5. Цепь, содержащая индуктивный элемент с индуктивностью L 2.6. Цепь, содержащая емкостный элемент с емкостью С 2.7. Цепь, содержащая катушку с активным сопротивлением r и индуктивностью L 2.8. Цепь, содержащая резистивный и емкостный элементы 2.9. Последовательное соединение r, L и С 2.10. Активная, реактивная и полная мощности цепи 2.11. Законы Кирхгофа в векторной форме 2.12. Резонанс напряжений 2.13. Разветвление цепи 2.14. Резонанс токов 2.15. Понятие о круговых диаграммах 2.16. Расчет синусоидальных цепей с использованикм комплексных чисел 2.17. Изображение напряжений и токов комплексными числами и векторами на комплексной плоскости 2.18. Комплексные значения полных сопротивлений и проводимостей цепи. Закон Ома в комплексной форме 2.19. Законы Кирхгофа в коиплексной форме 2.20. Выражение мощности в комплексной форме 2.21. Расчет сложных цепей 2.22. Цепи, связанные взаимной индукцией
Глава VI

Глава VI. ЭЛЕКТРОМАГНИТНЫЕ УСТРОЙСТВА
А. МАГНИТНЫЕ ЦЕПИ С ПОСТОЯННОЙ МАГНИТОДВИЖУЩЕЙ СИЛОЙ

6.1. Понятие об электромагнитных устройствах и магнитных цепях 6.2. Основные величины, используемые при расчете и анализе магнитных цепей. Задачи расчета и анализа 6.3. Свойства ферромагнитных материалов 6.4. Допущения и особенности использования основных законов магнитных цепей при расчете и анализе 6.5. Неразветвленные магнитные цепи 6.6. Неразветвленные магнитные цепи с постоянными магнитами 6.7. Разветвленные магнитные цепи 6.8. Основы расчета намагничивающих обмоток 6.9. Тяговое усилие в электромагнитных устройствах

Глава VI. ЭЛЕКТРОМАГНИТНЫЕ УСТРОЙСТВА
Б. МАГНИТНЫЕ ЦЕПИ С ПЕРЕМЕННОЙ МАГНИТОДВИЖУЩЕЙ СИЛОЙ

6.10. Явления, происходящие в магнитных цепях электромагнитных устройств переменного тока, и некоторые их конструктивные особенности 6.11. Формы кривых ЭДС е, магнитного потока Ф, тока i имгновенной мощности ρ идеализированной обмотки 6. 12. Вольт-амперные характеристики идеализированной обмотки 6.13. Эквивалентный ток и векторная диаграмма идеализированной обмотки 6.14. Схема замещения идеализированной обмотки и параметры схемы замещения 6.15. Схема замещения, векторные диаграммы и мощности реальной обмотки с ферромагнитным магнитопроводом 6.16. Определение тока, мощностей, эквивалентных соротивлений и угла сдвига фаз между напряжением и током реальной обмотки 6.17. феррорезонансный стабилизатор напряжения

Глава VI. ЭЛЕКТРОМАГНИТНЫЕ УСТРОЙСТВА
В. МАГНИТНЫЕ ЦЕПИ С ПОСТОЯННОЙ И ПЕРЕМЕННОЙ МАГНИТОДВИЖУЩИМИ СИЛАМИ

6.18. Понятие о дросселях насыщения и магнитных усилителях 6.19. Устройство МУ 6.20. Принцип действия МУ 6.21. Соотношения между токами и характеристика управления МУ 6.22. Коэффициенты усиления МУ 6.23. Обратные связи в МУ 6.24. Смещение в МУ 6.25. Понятие о двухтактных и трехфазных МУ
Глава IX

Глава IX. МАШИНЫ ПОСТОЯННОГО ТОКА

9.1. Назначение и устройство машин постоянного тока 9.2. Краткие сведения об обмотках якорей. Принцип действия машин постоянного тока 9.3. ЭДС якоря и электромагнитный момент машин постоянного тока 9.4. Явление реакции якоря в машинах постоянного тока 9.5. Явление коммутации в машинах постоянного тока 9.6. Классификация генераторов постоянного тока по способу возбуждения. Схемы включения генераторов 9.7. Свойства и характеристики генераторов независимого возбуждения 9.8. Свойства и характеристики генераторов параллельного возбуждения 9.9. Свойства и характеристики генераторов смешанного возбуждения 9.10. Сравнительная оценка и технические данные генераторов постоянного тока 9.11. Классификация двигателей по способу возбуждения. Схемы включения двигателей и положительные направления частоты вращения, момента, токов и других величин 9.12. Зависимости токов от нагрузки двигателей. Соотношения между токами 9.13. Зависимости магнитного потока от тока якоря двигателей 9.14. Зависимости момента от тока якоря. Перегрузочная способность двигателей 9.15. Соотношение между напряжением, ЭДС и падением напряжения в сопротивлениях цепи якоря. Формула тока якоря 9.16. Естественные механические и электромеханические характеристики двигателей 9.17. Пуск двигателей 9.18. Регулирование частоты вращения двигателей 9.19. Тормозные режимы работы двигателей 9.20. Потери мощности и КПД машин постоянного тока 9.21. Сравнительная оценка и технические данные двигателей постоянного тока 9.22. Универсальные коллекторные двигатели 9.23. Микродвигатели постоянного тока
Глава X

Глава X.

10.1. Устройство асинхронного двигателя трехфазного тока 10.2. Вращающееся магнитное поле 10.3. Принцип действия асинхронного двигателя 10.4. ЭДС обмотки статора 10.5. ЭДС, частота тока ротора, скольжение 10.6. Индуктивные сопротивления обмоток статора и ротора 10.7. Ток и эквивалентная схема фазы обмотки ротора 10.8. Магнитодвижущие силы оьмоток статора и ротора. Ток обмотки статора 10.9. Электромагнитная мощность и потери в асинхронном двигателе 10.10. Момент, развиваемый двигателем 10.11. Схема замещения асинхронного двигателя 10.12. Механическая характеристика асинхронного двигателя 10.13. Паспортные данные двигателя. Расчет и построение механической характеристики 10.14. Пуск асинхронных двигателей 10.15. Двигатели с улучшенными пусковыми свойствами 10.16. Регулирование частоты вращения 10.17. Тормозные режимы работы 10.18. Энергетические показатели асинхронного двигателя 10.19. Однофазные асинхронные двигатели 10.20. Асинхронный тахогенератор 10.21. Сельсины 10.22. Вращающийся трансформатор 10.23. Понятие о линейном трехфазном асинхронном двигателе

Глава седьмая
ЭЛЕКТРИЧЕСКИЕ ИЗМЕРЕНИЯ И ПРИБОРЫ

7.2 ПОГРЕШНОСТИ ИЗМЕРЕНИЙ. НОМИНАЛЬНЫЕ ВЕЛИЧИНЫ И ПОСТОЯННЫЕ ПРИБОРОВ. УСЛОВНЫЕ ОБОЗНАЧЕНИЯ ЭЛЕКТРОИЗМЕРИТЕЛЬНЫХ ПРИБОРОВ

7.2.1. Погрешности измерений и электроизмерительных приборов. Показания электроизмерительныхприборов несколько от­личаются от действительных значений измеряемых величин. Это вызвано непостоянством параметров измерительной цепи (изменение температуры, индуктивности и т. п.), несовершенством конструкции измерительного механизма (наличие трения и т. д.) и влиянием внешних факторов (внешние магнитные и электрические поля, изменение температуры окружающей среды и т. д.).

Разность между измеренным Аи и действительным Aд значениями контролируемой величины называется абсолютной погрешностью измерения:

ΔА = Аи - Ад.

Если не учитывать значения измеряемой величины, то абсолютная погрешность не даст представления о степени точности измерения. Действительно, предположим, что абсолютная погрешность при измерении напряжения составляет ΔU = 1 В. Если указанная погрешность получена при измерении напряжения в 100 В, то измерение произведено с достаточной степенью точности. Если же погрешность ΔU = 1 В получена при измерении напряжения в 2 В, то степень точности недостаточна. Поэтому погрешность измерения принято оценивать не абсолютной, а относительной погрешностью.

Относительная погрешность измерения представляет собой отношение абсолютной погрешности к действительному значению измеряемой величины, выраженное в процентах:

(7.3)
γ = ΔА 100 = Аи - Ад 100.
Ад Ад

Поскольку действительное значение, измеряемой величины при измерении не известно, для определения ΔА и γ можно воспользоваться классом точности прибора, представляющим собой обобщенную характеристику средств измерений, определяемую предельными допустимыми погрешностями.

Амперметры, вольтметры и ваттметры подразделяются на восемь классов точности: 0,05; 0,1; 0,2; 0,5: 1,0; l,5; 2,5; 4,0. Цифра, обозначающая класс точности, определяет наибольшую положительную или отрицательную основную приведенную погрешность, которую имеет данный прибор.

Под основной приведенной погрешностью прибора понимают абсолютную погрешность, выраженную в процентах по отношению к номинальной величине прибора:

(7.4)
γпр = ΔА 100 = Аи - Ад 100.
Аном Аном

Например, прибор класса точности 0,5 имеет γпр = ±0,5%. Погрешность γпр называется основной, так как она гарантирована в нормальных условиях, под которыми понимают температуру окружающей среды 20°C, отсутствие внешних магнитных полей, соответствующее положение прибора и т. д. При других условиях возникают дополнительные погрешности. Погрешность γпр называется приведенной, потому что абсолютная погрешность независимо от значения измеряемой величины выражается в процентах по отношению к постоянной величине Аном.

Сравнивая (7.3) и (7,4), нетрудно получить

(7.5)
γ = γпр Аном .
Ад

Из (7.5) следует, что относительная погрешность измерения зависит от действительного значения измеряемой величины и возрастает при ее уменьшении. Вследствие этого надо стараться по возможности не пользоваться при измерении начальной частью шкалы прибора. В случае необходимости измерения малых величин следует применять другие приборы.

Пример   7.1.   Номинальное   напряжение   вольтметра   Uном = 150 В, класс точности 1,5. С помощью вольтметра измерено напряжение U= 50 В.

Определить абсолютную и относительную величину погрешности измерения, а также действительное значение напряжения.

Решение. Абсолютная погрешность измерения

ΔU = γпрUном =± 1,5•150 = ± 2,25 В.
100 100

Действительное значение напряжения может лежать в пределах

Uд = Uи - ΔU = (50 ± 2,25)В.

Относительная погрешность измерения

γ = ΔU 100 = ±2,25 = (4,72÷4,31)%.
Uд 50 - 2,25

7.2.2. Номинальные величины приборов. Номинальными напряжением Uном, током Iном и мощностью Pном соответственно вольтметра, амперметра и ваттметра называются наибольшие напряжение, ток и мощность, которые могут быть измерены перечисленными приборами.

Номинальная мощность ваттметра в отличие от его номинальных напряжения и тока указывается не всегда. Для ваттметра номинальное напряжение представляет собой наибольшее напряжение, на которое может быть включена обмотка напряжения; номинальным током является наибольший ток, на который рассчитана последовательная обмотка.

Если номинальная мощность ваттметра не дана, то ее можно подсчитать по номинальному напряжению и току:

Рном = Uном Iном.

7.2.3. Постоянные приборов. Постоянная (цена деления) прибора представляет собой значение измеряемой величины, вызывающее отклонение подвижной части прибора на одно деление шкалы. Постоянные вольтметра, амперметра и ваттметра могут быть определены следующим образом:

CU = Uном /N, вольт на одно деление;

CI = Iном /N, ампер на одно деление;

CP = Uном Iном /N, ватт на одно деление.

где N - число делений шкалы соответственно вольтметра, амперметра и ваттметра.

Пример 7.2. Ваттметр имеет номинальное напряжение Uном = 150 В, номинальный ток
I
ном = 5 А, число делений шкалы N = 150.

Определить номинальную мощность и постоянную ваттметра, а также его показание, если при измерении мощности подвижная часть отклонилась на N = 60 делений.

Решение. Номинальная мощность ваттметра

Рном = Uном Iном = 150•5= 750 Вт.

Постоянная ваттметра

CP = Pном /N = 750/150 = 5 Вт/дел.

Показание ваттметра при отклонении его подвижной части на N = 60 делений

P = CP N= 5•60 = 300 Вт.

7.2.4. Чувствительность приборов. Под чувствительностью приборов понимают число делений шкалы, приходящееся на единицу измеряемой величины. Чувствительность вольтметра, амперметра и ваттметра может быть определена следующим образом:

SU = N/Uном, деленийна вольт;

SI = N/Iном, делений на ампер;

SP = N =N , делений на ватт.
P UномIном

Очевидно, что S = 1/С

Таблица 7.1

Род измеряемой величины Название прибора Условное обозначение
Ток

 

 

Амперметр А
Миллиамперметр
Микроамперметр μA
Напряжение

 

Вольтметр V
Милливольтметр mV
Электрическая мощность

 

Ваттметр W
Киловаттметр kW
Электрическая энергия Счетчик киловаттчасов kWh
Сдвиг   фаз Фазометр φ
Частота Частотомер Hz
Электрическое сопротивление

 

Омметр Ω
Мегаомметр МΩ

 

Таблица 7.2

Система прибора

Условное обозначение

Магнитоэлектрическая:
с подвижной рамкой  и  механической противодействующей силой

с подвижными рамками без механической пpoтиводействующей силы (логометр)

Электромагнитная:
с механической противодействующей силой

без  механической    противодействующей    силы (логометр)

Электродинамическая (без экрана):
с механической противодействующей силой

без    механической    противодействующей    силы (логометр)

 

7.2.5. Условные обозначения электроизмерительных приборов. На лицевой стороне электроизмерительных приборов изображен ряд условных обозначений, позволяющих правильно выбрать прибор и дающих некоторые указания по их эксплуатации.

Таблица 7.3

Условное обозначение Расшифровки условного обозначения
Прибор постоянного тока
Прибор постоянного и переменного тока
Прибор  переменного тока
Прибор трехфазного тока.
Прибор класса точности 1,5
Измерительная цепь изолирована от корпуса и испытана
напряжением  2 кВ
Осторожно! Прочность изоляции измерительной цепи
не соответствует нормам
Рабочее   положение   шкалы  наклонное,  
под  углом 60° к горизонту
Рабочее положение шкалы горизонтальное
Рабочее положение шкалы вертикальное
Исполнение прибора в зависимости   от   условий
эксплуатации (свойств окружающей среды)
Категория  прибора   по   степени   защищенности  
от внешних магнитных полей

Согласно ГОСТ на лицевой стороне прибора должны быть изображены:
а) условное обозначение единицы измерения или измеряемой величины либо начальные буквы наименования прибора (табл. 7.1);
б) условное обозначение системы прибора (табл. 7.2);

в) условные обозначения рода тока и числа фаз, класса точности прибора, испытательного напряжения изоляции, рабочего положения прибора, исполнения прибора в зависимости от условий эксплуатации, категории прибора по степени защищенности от внешних магнитных полей (табл. 7.3).

 [an error occurred while processing this directive]