[an error occurred while processing this directive]
Все справочники Предисловие Введение
Глава I

Глава I. ЭЛЕКТРИЧЕСКИЕ ЦЕПИ ПОСТОЯННОГО ТОКА

1.1. Получение и области применений постоянного тока 1.2. Элементы электротехнических установок электрические цепи и схемы 1.3. Задачи расчета и анализа электрических цепей. Параметры, используемые при расчете и анализе 1.4. Некоторые условные обозначения и классификация электрических цепей. Понятие о двухполюсниках 1.5. Проводниковые и электроизоляционные материалы. Сопротивление проводников и электрическая прочность диэлектриков 1.6. Направления токов, напряжений и э.д.с., единицы их измерения 1.7. Некоторые особенности использования законов Ома и Кирхгофа при расчете и анализе электрических цепей 1.8. Нагревание элементов электрических цепей 1.9. Режимы работы элементов электрических цепей 1.10. Электрические цепи с одним источником энергии и пассивными (резистивными) элементами 1.11. Понятие об источнике тока 1.12. Неразветвленная электрическая цепь с одним источником энергии и активным приемником 1.13. Уравнение баланса мощностей электрических цепей 1.14. Разветвленные электрические схемы с несколькими источниками 1.15. Способы соединения источников электрической энергии 1.16. Нелинейные электрические цепи постоянного тока 1.17. Мостовые электрические цепи 1.18, Понятие об электрическом моделировании
Глава II

Глава II. ЭЛЕКТРИЧЕСКИЕ ЦЕПИ СИНУСОИДАЛЬНОГО ТОКА

2.1. Получение синусоидальной эдс. Основные соотношения 2.2. Действующее и среднее значения синусоидальных тока, эдс и напряжения 2.3 Векторные диаграммы 2.4. Цепь, содержащая резистивный элемент с активным сопротивлением r 2.5. Цепь, содержащая индуктивный элемент с индуктивностью L 2.6. Цепь, содержащая емкостный элемент с емкостью С 2.7. Цепь, содержащая катушку с активным сопротивлением r и индуктивностью L 2.8. Цепь, содержащая резистивный и емкостный элементы 2.9. Последовательное соединение r, L и С 2.10. Активная, реактивная и полная мощности цепи 2.11. Законы Кирхгофа в векторной форме 2.12. Резонанс напряжений 2.13. Разветвление цепи 2.14. Резонанс токов 2.15. Понятие о круговых диаграммах 2.16. Расчет синусоидальных цепей с использованикм комплексных чисел 2.17. Изображение напряжений и токов комплексными числами и векторами на комплексной плоскости 2.18. Комплексные значения полных сопротивлений и проводимостей цепи. Закон Ома в комплексной форме 2.19. Законы Кирхгофа в коиплексной форме 2.20. Выражение мощности в комплексной форме 2.21. Расчет сложных цепей 2.22. Цепи, связанные взаимной индукцией
Глава VI

Глава VI. ЭЛЕКТРОМАГНИТНЫЕ УСТРОЙСТВА
А. МАГНИТНЫЕ ЦЕПИ С ПОСТОЯННОЙ МАГНИТОДВИЖУЩЕЙ СИЛОЙ

6.1. Понятие об электромагнитных устройствах и магнитных цепях 6.2. Основные величины, используемые при расчете и анализе магнитных цепей. Задачи расчета и анализа 6.3. Свойства ферромагнитных материалов 6.4. Допущения и особенности использования основных законов магнитных цепей при расчете и анализе 6.5. Неразветвленные магнитные цепи 6.6. Неразветвленные магнитные цепи с постоянными магнитами 6.7. Разветвленные магнитные цепи 6.8. Основы расчета намагничивающих обмоток 6.9. Тяговое усилие в электромагнитных устройствах

Глава VI. ЭЛЕКТРОМАГНИТНЫЕ УСТРОЙСТВА
Б. МАГНИТНЫЕ ЦЕПИ С ПЕРЕМЕННОЙ МАГНИТОДВИЖУЩЕЙ СИЛОЙ

6.10. Явления, происходящие в магнитных цепях электромагнитных устройств переменного тока, и некоторые их конструктивные особенности 6.11. Формы кривых ЭДС е, магнитного потока Ф, тока i имгновенной мощности ρ идеализированной обмотки 6. 12. Вольт-амперные характеристики идеализированной обмотки 6.13. Эквивалентный ток и векторная диаграмма идеализированной обмотки 6.14. Схема замещения идеализированной обмотки и параметры схемы замещения 6.15. Схема замещения, векторные диаграммы и мощности реальной обмотки с ферромагнитным магнитопроводом 6.16. Определение тока, мощностей, эквивалентных соротивлений и угла сдвига фаз между напряжением и током реальной обмотки 6.17. феррорезонансный стабилизатор напряжения

Глава VI. ЭЛЕКТРОМАГНИТНЫЕ УСТРОЙСТВА
В. МАГНИТНЫЕ ЦЕПИ С ПОСТОЯННОЙ И ПЕРЕМЕННОЙ МАГНИТОДВИЖУЩИМИ СИЛАМИ

6.18. Понятие о дросселях насыщения и магнитных усилителях 6.19. Устройство МУ 6.20. Принцип действия МУ 6.21. Соотношения между токами и характеристика управления МУ 6.22. Коэффициенты усиления МУ 6.23. Обратные связи в МУ 6.24. Смещение в МУ 6.25. Понятие о двухтактных и трехфазных МУ
Глава IX

Глава IX. МАШИНЫ ПОСТОЯННОГО ТОКА

9.1. Назначение и устройство машин постоянного тока 9.2. Краткие сведения об обмотках якорей. Принцип действия машин постоянного тока 9.3. ЭДС якоря и электромагнитный момент машин постоянного тока 9.4. Явление реакции якоря в машинах постоянного тока 9.5. Явление коммутации в машинах постоянного тока 9.6. Классификация генераторов постоянного тока по способу возбуждения. Схемы включения генераторов 9.7. Свойства и характеристики генераторов независимого возбуждения 9.8. Свойства и характеристики генераторов параллельного возбуждения 9.9. Свойства и характеристики генераторов смешанного возбуждения 9.10. Сравнительная оценка и технические данные генераторов постоянного тока 9.11. Классификация двигателей по способу возбуждения. Схемы включения двигателей и положительные направления частоты вращения, момента, токов и других величин 9.12. Зависимости токов от нагрузки двигателей. Соотношения между токами 9.13. Зависимости магнитного потока от тока якоря двигателей 9.14. Зависимости момента от тока якоря. Перегрузочная способность двигателей 9.15. Соотношение между напряжением, ЭДС и падением напряжения в сопротивлениях цепи якоря. Формула тока якоря 9.16. Естественные механические и электромеханические характеристики двигателей 9.17. Пуск двигателей 9.18. Регулирование частоты вращения двигателей 9.19. Тормозные режимы работы двигателей 9.20. Потери мощности и КПД машин постоянного тока 9.21. Сравнительная оценка и технические данные двигателей постоянного тока 9.22. Универсальные коллекторные двигатели 9.23. Микродвигатели постоянного тока
Глава X

Глава X.

10.1. Устройство асинхронного двигателя трехфазного тока 10.2. Вращающееся магнитное поле 10.3. Принцип действия асинхронного двигателя 10.4. ЭДС обмотки статора 10.5. ЭДС, частота тока ротора, скольжение 10.6. Индуктивные сопротивления обмоток статора и ротора 10.7. Ток и эквивалентная схема фазы обмотки ротора 10.8. Магнитодвижущие силы оьмоток статора и ротора. Ток обмотки статора 10.9. Электромагнитная мощность и потери в асинхронном двигателе 10.10. Момент, развиваемый двигателем 10.11. Схема замещения асинхронного двигателя 10.12. Механическая характеристика асинхронного двигателя 10.13. Паспортные данные двигателя. Расчет и построение механической характеристики 10.14. Пуск асинхронных двигателей 10.15. Двигатели с улучшенными пусковыми свойствами 10.16. Регулирование частоты вращения 10.17. Тормозные режимы работы 10.18. Энергетические показатели асинхронного двигателя 10.19. Однофазные асинхронные двигатели 10.20. Асинхронный тахогенератор 10.21. Сельсины 10.22. Вращающийся трансформатор 10.23. Понятие о линейном трехфазном асинхронном двигателе

Глава вторая
ЭЛЕКТРИЧЕСКИЕ ЦЕПИ СИНУСОИДАЛЬНОГО ТОКА

2.12.  РЕЗОНАНС НАПРЯЖЕНИЙ

Известно, что в механической системе резонанс наступает при равенстве собственной частоты колебаний системы и частоты колебаний возмущающей силы, действующей на систему. Колебания механической системы, например колебания маятника, сопровождаются периодическим переходом кинетической энергии в потенциальную и наоборот. При резонансе механической системы малые возмущающие силы могут вызывать большие колебания системы, например большую амплитуду колебаний маятника.

В цепях переменного тока, где есть индуктивность и емкость, могут возникнуть явления резонанса, которые аналогичны явлению резонанса в механической системе. Однако полная аналогия - равенство собственной частоты колебаний электрического контура частоте возмущающей силы (частоте напряжения сети) — возможна не во всех случаях.

В общем случае под резонансом электрической цепи понимают такое состояние цепи, когда ток и напряжение совпадают по фазе, и, следовательно, эквивалентная схема цепи представляет собой активное сопротивление. Такое состояние цепи имеет место при определенном соотношении ее параметров r, L, С, когда резонансная частота цепи равна частоте приложенного к ней напряжения.

Резонанс вэлектрической цепи сопровождается периодическим переходом энергии электрического поля емкости в энергию магнитного поля индуктивности и наоборот.

При резонансе в электрической цепи малые напряжения, приложенные к цепи, могут вызвать значительные токи и напряжения на отдельных ее участках. В цепи, где r, L, С соединены последовательно, может возникнуть резонанс напряжений, а в цепи, где r, L, С соединены параллельно,— резонанс токов.

Рассмотрим явление резонанса напряжений на примере цепи рис. 2.11, а.

Как отмечалось, при резонансе ток и напряжение совпадают по фазе, т. е. угол φ = 0. и полное сопротивление цепи равно ее активному сопротивлению.

z = r2 + (xL - xС)2 = r.

Это равенство, очевидно, будет иметь место, если xL = хС , т. е. реактивное сопротивление цепи равно нулю:

x = xL — xС = 0.

Выразив xL и xС соответственно через L, С и f, получим

fL = 1 ,
fC
откуда
f = 1 = fрез
2π√LC
где fчастота напряжения, подведенного к контуру; fрез — резонансная частота.

Таким образом, при xL = xС в цепи возникает резонанс напряжений, так как резонансная частота равна частоте напряжения, подведенного к цепи.

Из   выражения   закона   Ома  для   последовательной   цепи

I = U .
r2 + (xL - xС)2
Рис. 2.14. Векторная диаграмма (а) и графики мгновенных значений и, i, р (б) цепи рис. 2.11, а при резонансе напряжений
вытекает, что ток в цепи при резонансе равен напряжению, деленному на активное сопротивление:
I = U/r.

Ток в цепи может оказаться значительно больше тока, который был бы при отсутствии резонанса. При резонансе напряжение на индуктивности равно напряжению на емкости:

IxL = IxС = UL = UC.

При больших значениях xL и хC относительно r эти напряжения могут во много раз превышать напряжение сети. Резонанс в цепи при последовательном соединении потребителей носит название резонанса напряжений.

Напряжение на активном сопротивлении при резонансе равно напряжению, приложенному к цепи:

Ur = Ir = U.

На рис. 2.14, а изображена векторная диаграмма цепи рис. 2.11, а при резонансе напряжений Диаграмма подтверждает тот факт, что ток совпадает по фазе с напряжением сети и что напряжение на активном сопротивлении равно напряжению сети. Реактивная мощность при резонансе равна нулю:

Q = QL - QC = ULI - UCI = 0.
так как UL = UC.

Полная мощность равна активной мощности;

S = P2 + Q2 = P,
так как реактивная мощность равна нулю. Коэффициент мощности равен единице:
cos φ = P/S = r/z = 1.

Поскольку резонанс напряжений возникает, когда индуктивное сопротивление последовательной цепи равно емкостному, а их значения определяются соответственно индуктивностью, емкостью цепи и частотой сети,

xL = fL,   xС = 1 .

Резонанс может быть получен или путем подбора параметров цепи при заданной частоте сети, или путем подбора частоты сети при заданных параметрах цепи.

На рис. 2.14, б изображены графики мгновенных значений тока i, напряжения и сети и напряжений иL , иC , иr на отдельных участках, а также активной р = iur и реактивной pL= iиL ,
pС = iиС
мощностей за период для цепи рис. 2.11. а при резонансе напряжений. С помощью этих графиков можно проследить энергетическне процессы, происходящие в цепи при резонансе напряжений.

Активная мощность р все время положительна, она поступает из сети к активному сопротивлению и выделяется в нем в виде тепла. Мощности pL и рС знакопеременные, и, как видно из графика, их средние значения равны нулю.

В момент времени t = 0 (точка I на рис. 2.14, б) ток в цепи i = 0 и энергия магнитного поля
WL =
0. Напряжение на емкости равно амплитудному значению UтС, конденсатор заряжен и энергия его электрического поля

WC = U2тcС .
2

В первую четверть периода, в интервале времени между точками 1 и 2, напряжение на емкости и, следовательно, энергия электрического поля убывают. Ток в цепи и энергия магнитного поля возрастают.

В конце первой четверти периода (точка 2) иС = 0, WС = 0. i = Im,  WL = I2mL/2.

Таким образом, в первую четверть периода энергия электрического поля переходит в энергию магнитного поля.

Так как площади pС(t) и pL(t) , выражающие запас энергии соответственно в электрическом и магнитном  полях, одинаковы, вся энергия электрического поля конденсатора переходит в энергию магнитного поля индуктивности. Во вторую четверть периода, в интервале между точками 2 и 3, энергия магнитного поля переходит в энергию электрического поля.

Рис. 2.15. Графики зависимости I, r, хC, хL, Ur, UL , UC от частоты цепи, изображенной на рис  2.11, а

Аналогичные процессы происходят и в последующие четверти периода.

Таким образом, при резонансе реактивная энергия циркулирует внутри контура от индуктивности к емкости и обратно. Обмена реактивной энергией между источниками и цепью не происходит. Ток в проводниках, соединяющих источник с цепью, обусловлен только активной мощностью.

Для анализа цепей иногда используют частотный метод, позволяющий выяснить зависимость параметров цепи и других величин oт частоты.

На рис 2.15 изображены графики зависимости Ur, UC , UL , I, хC , хL , от частоты при неизменном напряжении сети.

При f = 0 сопротивления xL = fL = 0,
хC = 1/fC = ∞, ток I = 0, напряжения Ur = Ir = 0,
UL = IxL=
0, UC = U.
При f = fpез хL = хC , I = U/r, UL = UC, Ur = U. При f→ ∞ xL→∞, хC→ 0, Ur → 0, UC → 0, ULU.

В интервале частот от f = 0 до f = fpез нагрузка имеет активно-емкостный характер, ток опережает по фазе напряжение сети. В интервале частот f = fpез до f→ ∞ нагрузка носит активно-индуктивный характер, ток отстает по фазе от напряжения сети.

Наибольшее значение напряжения на емкости получается при частоте, несколько меньшей резонансной, на индуктивности - при частоте, несколько большей резонансной.

Явления резонанса широко используются в радиоэлектронных устройствах и в заводских промышленных установках.

Пример 2.4. Определить частоту сети, при которой в цепи рис. 2.11, а возникает резонанс напряжений. Определить также, во сколько раз напряжение на индуктивности больше напряжения сети при резонансе, если цепь имеет следующие параметры:

r = 20 Ом, L = 0,1 Гн, С = 5 мкф.

Решение. Резонансная частота

fpез = 1 = 1 = 224 Гц.
LC 2•3,14•√0,1•5•10-6

Индуктивное сопротивление цепи при резонансе

xL =fpезL - 6,28 • 224 • 0,l = 140 Ом.

Напряжение на индуктивности при резонансе

UL = IxL ,    UL = U xL = U 140 = 7U.
U Ir r 20

Напряжение на индуктивности при резонансе в 7 раз больше напряжения сети.

 [an error occurred while processing this directive]