[an error occurred while processing this directive]
Все справочники Предисловие Введение
Глава I

Глава I. ЭЛЕКТРИЧЕСКИЕ ЦЕПИ ПОСТОЯННОГО ТОКА

1.1. Получение и области применений постоянного тока 1.2. Элементы электротехнических установок электрические цепи и схемы 1.3. Задачи расчета и анализа электрических цепей. Параметры, используемые при расчете и анализе 1.4. Некоторые условные обозначения и классификация электрических цепей. Понятие о двухполюсниках 1.5. Проводниковые и электроизоляционные материалы. Сопротивление проводников и электрическая прочность диэлектриков 1.6. Направления токов, напряжений и э.д.с., единицы их измерения 1.7. Некоторые особенности использования законов Ома и Кирхгофа при расчете и анализе электрических цепей 1.8. Нагревание элементов электрических цепей 1.9. Режимы работы элементов электрических цепей 1.10. Электрические цепи с одним источником энергии и пассивными (резистивными) элементами 1.11. Понятие об источнике тока 1.12. Неразветвленная электрическая цепь с одним источником энергии и активным приемником 1.13. Уравнение баланса мощностей электрических цепей 1.14. Разветвленные электрические схемы с несколькими источниками 1.15. Способы соединения источников электрической энергии 1.16. Нелинейные электрические цепи постоянного тока 1.17. Мостовые электрические цепи 1.18, Понятие об электрическом моделировании
Глава II

Глава II. ЭЛЕКТРИЧЕСКИЕ ЦЕПИ СИНУСОИДАЛЬНОГО ТОКА

2.1. Получение синусоидальной эдс. Основные соотношения 2.2. Действующее и среднее значения синусоидальных тока, эдс и напряжения 2.3 Векторные диаграммы 2.4. Цепь, содержащая резистивный элемент с активным сопротивлением r 2.5. Цепь, содержащая индуктивный элемент с индуктивностью L 2.6. Цепь, содержащая емкостный элемент с емкостью С 2.7. Цепь, содержащая катушку с активным сопротивлением r и индуктивностью L 2.8. Цепь, содержащая резистивный и емкостный элементы 2.9. Последовательное соединение r, L и С 2.10. Активная, реактивная и полная мощности цепи 2.11. Законы Кирхгофа в векторной форме 2.12. Резонанс напряжений 2.13. Разветвление цепи 2.14. Резонанс токов 2.15. Понятие о круговых диаграммах 2.16. Расчет синусоидальных цепей с использованикм комплексных чисел 2.17. Изображение напряжений и токов комплексными числами и векторами на комплексной плоскости 2.18. Комплексные значения полных сопротивлений и проводимостей цепи. Закон Ома в комплексной форме 2.19. Законы Кирхгофа в коиплексной форме 2.20. Выражение мощности в комплексной форме 2.21. Расчет сложных цепей 2.22. Цепи, связанные взаимной индукцией
Глава VI

Глава VI. ЭЛЕКТРОМАГНИТНЫЕ УСТРОЙСТВА
А. МАГНИТНЫЕ ЦЕПИ С ПОСТОЯННОЙ МАГНИТОДВИЖУЩЕЙ СИЛОЙ

6.1. Понятие об электромагнитных устройствах и магнитных цепях 6.2. Основные величины, используемые при расчете и анализе магнитных цепей. Задачи расчета и анализа 6.3. Свойства ферромагнитных материалов 6.4. Допущения и особенности использования основных законов магнитных цепей при расчете и анализе 6.5. Неразветвленные магнитные цепи 6.6. Неразветвленные магнитные цепи с постоянными магнитами 6.7. Разветвленные магнитные цепи 6.8. Основы расчета намагничивающих обмоток 6.9. Тяговое усилие в электромагнитных устройствах

Глава VI. ЭЛЕКТРОМАГНИТНЫЕ УСТРОЙСТВА
Б. МАГНИТНЫЕ ЦЕПИ С ПЕРЕМЕННОЙ МАГНИТОДВИЖУЩЕЙ СИЛОЙ

6.10. Явления, происходящие в магнитных цепях электромагнитных устройств переменного тока, и некоторые их конструктивные особенности 6.11. Формы кривых ЭДС е, магнитного потока Ф, тока i имгновенной мощности ρ идеализированной обмотки 6. 12. Вольт-амперные характеристики идеализированной обмотки 6.13. Эквивалентный ток и векторная диаграмма идеализированной обмотки 6.14. Схема замещения идеализированной обмотки и параметры схемы замещения 6.15. Схема замещения, векторные диаграммы и мощности реальной обмотки с ферромагнитным магнитопроводом 6.16. Определение тока, мощностей, эквивалентных соротивлений и угла сдвига фаз между напряжением и током реальной обмотки 6.17. феррорезонансный стабилизатор напряжения

Глава VI. ЭЛЕКТРОМАГНИТНЫЕ УСТРОЙСТВА
В. МАГНИТНЫЕ ЦЕПИ С ПОСТОЯННОЙ И ПЕРЕМЕННОЙ МАГНИТОДВИЖУЩИМИ СИЛАМИ

6.18. Понятие о дросселях насыщения и магнитных усилителях 6.19. Устройство МУ 6.20. Принцип действия МУ 6.21. Соотношения между токами и характеристика управления МУ 6.22. Коэффициенты усиления МУ 6.23. Обратные связи в МУ 6.24. Смещение в МУ 6.25. Понятие о двухтактных и трехфазных МУ
Глава IX

Глава IX. МАШИНЫ ПОСТОЯННОГО ТОКА

9.1. Назначение и устройство машин постоянного тока 9.2. Краткие сведения об обмотках якорей. Принцип действия машин постоянного тока 9.3. ЭДС якоря и электромагнитный момент машин постоянного тока 9.4. Явление реакции якоря в машинах постоянного тока 9.5. Явление коммутации в машинах постоянного тока 9.6. Классификация генераторов постоянного тока по способу возбуждения. Схемы включения генераторов 9.7. Свойства и характеристики генераторов независимого возбуждения 9.8. Свойства и характеристики генераторов параллельного возбуждения 9.9. Свойства и характеристики генераторов смешанного возбуждения 9.10. Сравнительная оценка и технические данные генераторов постоянного тока 9.11. Классификация двигателей по способу возбуждения. Схемы включения двигателей и положительные направления частоты вращения, момента, токов и других величин 9.12. Зависимости токов от нагрузки двигателей. Соотношения между токами 9.13. Зависимости магнитного потока от тока якоря двигателей 9.14. Зависимости момента от тока якоря. Перегрузочная способность двигателей 9.15. Соотношение между напряжением, ЭДС и падением напряжения в сопротивлениях цепи якоря. Формула тока якоря 9.16. Естественные механические и электромеханические характеристики двигателей 9.17. Пуск двигателей 9.18. Регулирование частоты вращения двигателей 9.19. Тормозные режимы работы двигателей 9.20. Потери мощности и КПД машин постоянного тока 9.21. Сравнительная оценка и технические данные двигателей постоянного тока 9.22. Универсальные коллекторные двигатели 9.23. Микродвигатели постоянного тока
Глава X

Глава X.

10.1. Устройство асинхронного двигателя трехфазного тока 10.2. Вращающееся магнитное поле 10.3. Принцип действия асинхронного двигателя 10.4. ЭДС обмотки статора 10.5. ЭДС, частота тока ротора, скольжение 10.6. Индуктивные сопротивления обмоток статора и ротора 10.7. Ток и эквивалентная схема фазы обмотки ротора 10.8. Магнитодвижущие силы оьмоток статора и ротора. Ток обмотки статора 10.9. Электромагнитная мощность и потери в асинхронном двигателе 10.10. Момент, развиваемый двигателем 10.11. Схема замещения асинхронного двигателя 10.12. Механическая характеристика асинхронного двигателя 10.13. Паспортные данные двигателя. Расчет и построение механической характеристики 10.14. Пуск асинхронных двигателей 10.15. Двигатели с улучшенными пусковыми свойствами 10.16. Регулирование частоты вращения 10.17. Тормозные режимы работы 10.18. Энергетические показатели асинхронного двигателя 10.19. Однофазные асинхронные двигатели 10.20. Асинхронный тахогенератор 10.21. Сельсины 10.22. Вращающийся трансформатор 10.23. Понятие о линейном трехфазном асинхронном двигателе

Глава   двенадцатая
ЭЛЕКТРОПРИВОД, ВЫБОР ДВИГАТЕЛЯ, АППАРАТУРА УПРАВЛЕНИЯ,
ЭЛЕКТРОСНАБЖЕНИЕ, ВОПРОСЫ ТЕХНИКИ БЕЗОПАСНОСТИ

12.4. ОПРЕДЕЛЕНИЕ МОЩНОСТИ ДВИГАТЕЛЯ. ВЫБОР ДВИГАТЕЛЯ  ПО КАТАЛОГУ

Определение мощности двигателя для производственного механизма выполняется в соответствии с нагрузкой на его валу по условиям нагрева. После того как двигатель выбран по ус­ловиям нагрева по каталогу, его проверяют по перегрузочной способности и условиям пуска.

За время работы теплота, обусловленная потерями мощности в двигателе, нагревает его. Допустимая же температура двигателя определяется классом изоляции его обмоток и не должна превышать определенного значения, установленного заводом-изготовителем. Необходимо выбрать такой двигатель по номинальной мощности, при которой он бы нагревался за время работы до температуры, не превосходящей допустимую. Превышение допустимой температуры приводит к потере изоляцией электрической и механической прочности и к выходу двигателя из строя.

Завышение мощности двигателя связано с дополнительными капитальными затратами, увеличением расхода энергии на единицу продукции, а для асинхронных двигателей, кроме того, — с ухудшением коэффициента мощности.

По характеру работы все производственные механизмы разделяются на четыре основные группы:

1) механизмы, работающие длительно с постоянной нагрузкой;

2) механизмы, работающие длительно с изменяющейся на­грузкой;

3) механизмы, часть времени производственного цикла работающие, другую часть находящиеся в неподвижном состоянии (повторно-кратковременный характер работы);

4) механизмы, работающие всего несколько секунд или минут, а затем длительно (десятки секунд или минут) находящиеся в неподвижном состоянии (кратковременный характер работы).

В соответствии с характером работы производственных механизмов установлены три основных номинальных режима двигателей: продолжительный, повторно-кратковременный и кратковременный.

При продолжительном режиме (рис. 12.2, а) за время работы двигатель успевает нагреться до установившейся температуры. При повторно-кратковременном режиме (рис. 12.2, б) за время работы tp двигатель не успевает нагреться до установившейся температуры, а за время паузы t0, когда он отключен от сети, не успеет охладиться до температуры окружающей среды τ0,с. Однако по прошествии нескольких циклов температура будет колебаться между наибольшими и наименьшими значениями, которые далее остаются постоянными. Основной характеристикой этого режима является относительная продолжительность включения, %,

ПВ = tp 100 = tp 100,
tp + t0 Tц
где tp, t0, Tц — соответственно интервалы работы, паузы и цикла.

При кратковременном режиме (рис. 12.2, в) за время работы tp двигатель не успевает нагреться до установившейся температуры, а за время паузы t0 успевает охладиться до температуры окружающей среды τ0,с.

Каждый двигатель может работать в любом из перечисленных режимов. Однако для получения наилучших экономических показателей электротехническая промышленность изготовляет двигатели, специально предназначенные для: а) продолжительного режима; б) повторно-кратковременного режима; в) кратковременного режима.

Рис. 12.2 Нагрузочные гра-
фики и изменение температуры двигателя при длительном (а), повторно-кратковременном (б) и кратковременном (в) режимах работы

Для двигателей продолжительного режима в каталогах задается номинальная мощность без каких-либо оговорок о времени работы. Для двигателей повторно-кратковременного режима в каталогах указываются номинальные значения мощности соответственно для ПВ - 15, 25, 40 и 60%. При этом время цикла не должно превышать 10 мин. В противном случае режим работы считается продолжительным. Для двигателей кратковременного режима в каталогах задаются несколько времен работы и соответствующие им номинальные мощности.

В основе выбора мощности двигателя любого режима работы лежит метод средних потерь. Он основан на сравнении средних потерь мощности ΔРср двигателя за цикл работы с потерями при номинальной нагрузке ΔРном .

Средние потери определяются из выражения

     
  n   l  
E = ΔРltl + ΔAl .
  1   1  
ΔРср = ΔAц =
Tц Tц

где ΔAцпотери энергии в двигателе за цикл; Tц— время цикла; ΔРltl — потери энергии в двигателе за время tl в течение которого двигатель работает с неизменной нагрузкой Рl; ΔAl— потери энергии при пуске и торможении.

Если средние потери за цикл работы не превышают потерь при номинальной нагрузке, то средняя температура двигателя не будет превышать допустимую и, следовательно, двигатель выбран правильно.

Таким образом, условия выбора двигателя

ΔРср ≤ ΔРном .

Однако использование метода средних потерь в некоторых случаях затруднено из-за отсутствия необходимых сведений о двигателе в каталогах.

Рис.12.3. Нагрузочные диаграммы I(t) (a), M(t) (б)

В практике широко применяется другой, более простой метод эквивалентных величин (тока, момента или мощности). Meтод эквивалентного тока основан на том, что действительный ток двигателя при разных нагрузках заменяется эквивалентным током неизменного значения Iэк, создающим за рабочий цикл те же потери в двигателе, что и действительный ток.

Потери мощности в двигателе складываются из постоянных (не зависящих от нагрузки) ΔРк и переменных ΔРс потерь:

(12.7)

ΔР = ΔРк + ΔРс = ΔРк + I2r.

К постоянным относятся потери в магнитопроводе и механические потери, к переменным — потери в обмотках.

В двигателе постоянного тока с параллельным возбуждением к переменным потерям относятся потери в цепи якоря, остальные потери, в том числе и потери в обмотке возбуждения, являются постоянными. В асинхронном двигателе переменными потерями следует считать потери в обмотках ротора и статора.

Потери мощности в двигателе за цикл работы равны сумме потерь на каждом из участков (рис.  12.3, а):

Рк + I12r)t1 + (ΔРк + I22r)t2 + ... = (ΔРк + Iэ2r) Tц .

Так как

ΔРк(t1 + t2 + t3 + ...) = ΔРкTц ,

то

I12rt1 + I22rt2 + I32rt3 + ... = Iэк2rTц,

откуда
(12.8)
Iэк = I12t1 + I22t2 + I32t3+ ... ,
Tц

При правильном выборе двигателя должно соблюдаться условие

(12.9)

Iном ≥ Iэк.

Метод эквивалентного тока пригоден для любого двигателя, однако его использование связано с необходимостью построения графика зависимости тока от времени за рабочий цикл механизма.

Учитывая, что для двигателей постоянного тока с параллельным возбуждением М = kMФIя = СIя, а для двигателей переменного тока М = СФI2 cos ψ2C1I2, в зоне рабочей части характеристики (в области от s = 0 до s ≈ sкp) можно перейти от эквивалентного тока к эквивалентному моменту, если в (12.8) ток выразить через момент:

(12.10)
Mэк = M12t1 + M22t2 + M32t3 + ... ,
Tц

Тогда условием выбора будет

(12.11)

Mном ≥ Mэк .

Для приводов, скорость двигателей которых не регулируется и мало зависит от нагрузки (двигатели постоянного тока с параллельным возбуждением, асинхронные двигатели с короткозамкнутым ротором и синхронные двигатели трехфазного тока), мощность

Р = ωМСМ

примерно пропорциональна моменту.

Выразив в (12.10) М через Р, получим расчетную формулу для эквивалентной мощности:

(12.12)
Рэк = P12t1 + P22t2 + P32t3 + ... ,
Tц

Номинальная мощность выбранного двигателя должна удовлетворять условию

(12.13)

Pном ≥ Pэк .

При определении мощности двигателя необходимо учитывать потери энергии в двигателе при пуске и торможении, особенно когда цикл работы непродолжительный и число включений двигателя в час достигает нескольких десятков. В этом случае надо пользоваться методом средних потерь, так как расчетные уравнения эквивалентных величин не учитывают потери энергии при пуске и торможении. В ряде случаев момент нагрузки на отдельных участках может оказаться больше максимально допустимого момента двигателя. Асинхронный двигатель может при этом остановиться, а на коллекторе двигателя постоянного тока может возникнуть недопустимое искрение. Поэтому после выбора двигателя любым из описанных выше методов его необходимо проверить по перегрузочной способности, исходя из условия

(12.14)

Мmax c ≤ Мmax д ,

где    Мmaxc — максимальный    момент    на    валу    двигателя, Мmaxд — максимально допустимый момент двигателя.

Для асинхронного двигателя Мmaxд = 0,9 Мmax , для двигателя постоянного тока с параллельным возбуждением Мmaxд= (2 ÷ 2,5) Мном .

Выбор двигателя не ограничивается определением его номинальной мощности. Из многообразных конструктивных форм исполнения двигателей, обусловленных способом установки и условиями окружающей среды, необходимо выбрать подходящую для данного конкретного случая. Для одних механизмов применяются двигатели с горизонтальным, для других — с вертикальным расположением вала. Для лучшей компоновки кроме двигателей с лапами выпускаются двигатели, имеющие фланцы на корпусе, посредством которых двигатели крепятся непосредственно к производственному механизму, например металлорежущему станку. Существуют встраиваемые двигатели, корпуса которых представляют единое целое с корпусом или станиной производственного механизма.

Рис. 12.4. Асинхронные двигатели с короткозамкнутым ротором типа 4А160М4УЗ мощностью 18,5 кВт, 1500 об/мин (а) и типа 4А315М4УЗ мощностью 200 кВт, 1500 об/мин (б)

Атмосфера, в которой работает двигатель, может содержать влагу, пыль, различные газы, пары кислот и даже взрывоопасные смеси. Эти компоненты атмосферы воздействуют на изоляцию обмотки, ухудшают ее механические и изоляционные свойства, что в конечном итоге может привести к выходу из строя двигателя. Поэтому конструкция двигателя предусматривает ту или иную защиту изоляции от воздействия атмосферных примесей.

В связи с этим выпускаются двигатели открытого, защищенного, закрытого и взрывобезопасного исполнений.

Открытые двигатели не имеют каких-либо средств защиты и применяются только в сухих помещениях без пыли, грязи и других примесей. Защищенные двигатели разделяются на три категории:

1) защищенные от случайного соприкосновения с токоведущими частями и попадания посторонних предметов внутрь двигателя (имеют сетки, закрывающие отверстия в корпусе двигателя),

2) защищенные от попадания капель (снабжены кроме сеток спе­циальными козырьками),

3) защищенные от дождя и брызг (обычно применяются на откры­том воздухе)

Закрытые двигатели используются в помещениях сырых или с едкими газами, большим содержанием пыли. Они бывают невентилируемыми, с принудительной вентиляцией и герметически закрытыми

Рис. 12.5. Асинхронный двигатель с короткозамкнутым ротором типа 4АН180М4УЗ мощностью 37 кВт, 1500 об/мин

Корпуса взрывобезопасных двигателей очень прочны; они выдерживают взрыв газов внутри двигателя и устроены так, что пламя взрыва не выходит в окружающую атмосферу.

На рис. 12.4, а, б и 12.5 изображены асинхронные двигатели с короткозамкнутыми обмотками ротора типа 4А160М4УЗ, 18,5 кВт, 1500 об/мин (рис. 12.4, а); типа 4А315М4УЗ, 200 кВт, 1500 об/мин (рис. 12.4, б), типа 4АН180М4УЗ, 37 кВт, 1500 об/мин (рис. 12.5).

Пример 12.3. Определить мощность и выбрать двигатель по каталогу для привода производственного механизма. График момента статической нагрузки, приведенный к валу двигателя с учетом потерь в передаче, изображен на рис. 12.3, б. По технологическим условиям следует использовать асинхронный двигатель с короткозамкнутым ротором. Частота вращения n = 1450 об/мин. Помещение, где будет работать двигатель, — сухое, без пыли и грязи. Предполагается установка двигателя на лапах на фундаменте.

Решение. Эквивалентный момент

Mэ = 1202 • 1+ 602 • 2 + 802 • 2 + 1702 • 2 = 110 Н • м.
1+2+2+2

Эквивалентная мощность

Рэк = Mэn =110 • 1450 = 16,7 кВт.
9550 9550

По условиям работы и способу установки выбираем по каталогу двигатель ближайшей большей мощности. Каталожные данные выбранного двигателя: 17 кВт, 380/220 В, ηном = 0,895, cos φном = 0,88, Iп = 7Iном, Мп/Мном = 1,2, Мmaxном = λ = 2, nном = 1430 об/мин.

Номинальный момент двигателя

Mном = 9550Pном =9557 • 17 = 113 Н • м
nном 1430

Максимальный (критический) момент

Мmax = λМном = 2 • 113 = 226 Н • м

Максимальный статический момент

Мс = 170 Н • м

По перегрузочной способности двигатель проходит, так как выполняется условие

0,9Мmax = 204 > Мс = 170

 [an error occurred while processing this directive]