Глава восьмая
ТРАНСФОРМАТОРЫ
8.12. КОНСТРУКТИВНОЕ ИСПОЛНЕНИЕ ТРАНСФОРМАТОРОВ
Трансформаторы малой мощности до 50 — 1000 Вт применяются в радиоприемниках, телевизорах, магнитофонах, осциллографах, многих измерительных устройствах, системах регулирования и т. п. Они бывают однообмоточные, двухобмоточные и многообмоточные. На рис. 8.24 изображен трансформатор малой мощности.
Рис. 8.24. Однофазный трансформатор малой мощности: 1 — магнитопровод;2 — каркас; 3 — первичная обмотка; 4 — изоляционная прокладка между первичной и вторичной обмотками; 5 — вторичная обмотка |
Магнитопровод трансформатора может иметь Ш или П-образную форму (рис. 8.25, а, б).
Площадь сечения окна магнитопровода всегда имеет прямоугольную форму с соотношением сторон б/а = 1,5 ÷ 2,5 (см. рис. 8.24). При такой форме магнитопровод имеет наименьшую массу и, следовательно, меньше потери энергии в нем по сравнению с квадратной формой окна. Обмотка выполняется из медного провода круглого или прямоугольного сечения, чаще всего с эмалевой изоляцией. В отдельных случаях применяются и другие изоляционные материалы. Обмотка укладывается плотными рядами на заранее изготовленный каркас (рис. 8.25, в) из электрокартона, текстолита или пластмассы. Между отдельными обмотками прокладывается слой изоляции из бумаги, лакоткани или другого изоляционного материала. После изготовления обмоток производится сборка трансформатора. Если магнитопровод имеет П-образную форму (рис. 8.25, б), то часть пластины К вставляется в обмотку поочередно то сверху, то снизу, а в возникшие промежутки между ними сверху и снизу вставляются части пластины М. При такой сборке последующий слой перекрывает место стыка предыдущего слоя. Сборка магнитопровода трансформатора, имеющего Ш-образную форму магнитопровода (рис. 8.25, а), производится в том же порядке. Естественно, что в этом случае пластина К вставляется в обмотку своей средней частью.
Трансформатор с Ш-образным магнитопроводом называют броневым, поскольку его обмотки с двух сторон охвачены магнитопроводом. Сборка магнитопровода внахлестку — последующий слой перекрывает стыки (воздушные промежутки) предыдущего слоя — существенно уменьшает эквивалентный воздушный зазор магнитопровода, что приводит к значительному снижению тока холостого хода трансформатора. Кроме того, такая сборка значительно повышает механическую прочность трансформатора и удобство крепления его магнитопровода.
Рис. 8 25. Формы магнитопроводов трансформаторов малой мощности (а, б, г) и каркас катушки трансформатора (в) |
Для придания магнитопроводу необходимой механической прочности и устранения «гудения» после сборки пластины магнитопровода стягиваются с помощью поперечных пластин и болтов.
Рис. 8.26. Расположение линий магнитного потока в месте стыка пластин магнитопровода |
Рис. 8.27. К пояснению зависимости длины витка обмотки трансформатора от формы площади сечения стержня магнитопровода при одном и том же значении площади. Окружность а' соответствует прямоугольной форме сечения а; окружность б' соответствует квадратной форме сечения б; окружность в' соответствует крестообразной форме сечения в, окружность г' соответствует ступенчатой форме сечения г |
Рис. 8.28. Пластины магнитопровода трехфазного трансформатора |
Уменьшение эквивалентного воздушного зазора можно объяснить тем, что магнитный поток обходит воздушный промежуток стыка через рядом расположенные пластины, не имеющие в этом месте стыка (рис. 8.26). В последнее время стали широко применяться магнитопроводы из склеенных пластин, состоящие из двух половин (рис. 8.25, г). Поверхности соприкосновения каждой половины для уменьшения зазора шлифуются. Такие две части вставляются в обмотки и крепятся. Для уменьшения потоков рассеяния, а следовательно, индуктивных сопротивлений обмоток на каждом каркасе в случае П-образной формы (рис. 8.25, б, г) укладывается по половине витков первичной и вторичной обмоток. После сборки половины обмоток соединяются последовательно согласно. В трансформаторах с Ш-образной формой магнитопровода все обмотки находятся на одном каркасе. Трансформатор малой мощности имеет естественное воздушное охлаждение.
Для проведения всякого рода исследований иногда требуются трансформаторы малой мощности с отличными от стандартных напряжениями первичной и вторичной обмоток. В этом случае можно рассчитать и изготовить трансформатор своими силами. В качестве магнитопровода можно использовать магнитопровод старых не годных к употреблению трансформаторов.
Инженерам-машиностроителям едва ли придется обслуживать установки с трансформаторами средней и большой мощности. Поэтому здесь будет рассмотрено конструктивное исполнение трансформаторов средней (20 - 500 кВ•А) и большой (до 500000 - 1000000 кВ•А) мощности в самом общем виде.
Рассмотрим конструктивное исполнение трехфазных трансформаторов. Форма магнитопроводов всех трансформаторов одинаковая — трехстержневая (см. рис. 8.17, д). Магнитопровод имеет три стержня, на которых располагаются первичные и вторичные обмотки трех фаз и два ярма Д, Е, объединяющие стержни в единый магнитопровод. Площадь сечения стержней определяется из уравнения U ≈ E = 4,44fwBmSст. Форма площади сечения, как вытекает из этой формулы, казалось бы, не оказывает никакого влияния на конструкцию и параметры трансформатора. Однако форма сечения существенно влияет на затраты меди для обмоток, массу, стоимость и параметры трансформатора. Сечения проводов обмоток трансформаторов средней и большой мощности исчисляются десятками и сотнями квадратных миллиметров: это шины квадратной или прямоугольной формы. Намотать такой провод на сердечник с прямоугольной формой сечения, так чтобы он прилегал к сторонам сердечника, невозможно. При изгибе провода под прямым углом произошла бы недопустимая деформация провода, да и намотать обмотку значительно проще на шаблон с круглым сердечником, чем с прямоугольным. По этим причинам катушки трансформаторов средней и большой мощности всегда круглые. Это определяет и форму сечения стержней трансформатора. Проще и дешевле изготовить магнитопровод с прямоугольной или квадратной формой площади сечения (рис. 8.27, а, б). Однако при этом, как это видно из рис. 8.27, длина витка и, следовательно, затраты обмоточного материала будут гораздо больше, чем при крестовидной (рис. 8.27, в) и тем более при ступенчатой (рис. 8.27, г) форме площади сечения. Кроме того, между обмоткой и стержнем будут большие пустоты, в результате чего возникнут значительные потоки рассеивания и обмотки будут иметь недопустимо большие индуктивные сопротивления.
Рис. 8.29. Силовой трехфазный трансформатор ТМ-320/10: 7 — переключатель для изменения коэффициента трансформации; 8 — охлаждающие трубы; 9 — расширительный бачок; 10 — измеритель масла; 11 — заливочное отверстие с пробкой |
Все это привело к тому, что по экономическим и техническим соображениям трансформаторы средней мощности выполняются с крестовидной, а большой мощности — со ступенчатой формой площади сечения стержней. Ярма имеют прямоугольную форму площади сечения. Магнитопровод собирается из отдельных тонких листов (0,35 — 0,5 мм) электротехнической стали внахлестку по тем же причинам, что и в трансформаторах малой мощности. Каждый слой магнитопровода состоит из отдельных листов (рис. 8.28), при сборке отдельные части последующего слоя располагаются так, что они перекрывают стыки листов предыдущего слоя. Магнитопровод с обмотками располагается в стальном баке, наполненном трансформаторным маслом. Трансформаторное масло выполняет роль охлаждающей среды и изолятора как между витками, так и между обмоткой и магнитопроводом.
Рис. 8.30. К пояснению изменения коэффициента трансформации трехфазного трансформатора |
На рис. 8.29 изображен трансформатор мощностью 320 кВ • А. Бак трансформатора герметически закрыт, а изменение объема масла, вызванное колебаниями температуры, компенсируется маслорасширительным бачком 9. В магнитопроводе и обмотках трансформаторов образуются значительные потери энергии, нагревающие трансформатор. И если поверхность бака недостаточная, трансформатор будет перегреваться. Поэтому бак трансформаторов снабжается радиаторами в виде труб 8, существенно увеличивающими поверхность охлаждения. В трансформаторах большой мощности и этого недостаточно. Действительно, допустим, мощность трансформатора 270000 кВ • А и КПД 98%, следовательно, потери мощности в нем составляют 5400 кВт. Такие трансформаторы охлаждаются с помощью водяных маслоохладителей, через которые пропускается горячее масло трансформатора. Выводы концов обмоток трансформатора осуществляются с помощью проходных фарфоровых изоляторов 5, 6 (рис. 8.29).
В условиях эксплуатации иногда значение напряжения первичной обмотки оказывается ниже нормального и тогда напряжение на вторичной (напряжение приемников) будет ниже номинального. Это существенно ухудшает их работу. Для поддержания вторичного напряжения в пределах номинального трансформаторы снабжаются устройством для изменения коэффициента трансформации. Обмотка высшего напряжения каждой фазы имеет три вывода (рис. 8.30), которые подключены к переключателю 7 (рис. 8.29). Переключатель может замыкать концы Х1, Y1, Z1, или Х2, Y2, Z2, или Х3, Y3, Z3. В результате будет изменяться коэффициент трансформации и, следовательно, напряжение на вторичной обмотке при неизменном первичном. Следует заметить, что трансформаторы содержат большое количество трансформаторного масла (до нескольких десятков тонн) и представляют большую пожарную опасность. Для ограничения последствий возникшего пожара под трансформатором всегда есть бетонная маслосборная яма, накрытая сеткой, на которую насыпан гравий. В случае утечки и возгорания масла оно через гравий стекает в маслосборную яму, а пламя изза сетки и гравия в яму не проникает. Возникший пожар быстро ликвидируется.