[an error occurred while processing this directive]
Все справочники Предисловие Введение
Глава I

Глава I. ЭЛЕКТРИЧЕСКИЕ ЦЕПИ ПОСТОЯННОГО ТОКА

1.1. Получение и области применений постоянного тока 1.2. Элементы электротехнических установок электрические цепи и схемы 1.3. Задачи расчета и анализа электрических цепей. Параметры, используемые при расчете и анализе 1.4. Некоторые условные обозначения и классификация электрических цепей. Понятие о двухполюсниках 1.5. Проводниковые и электроизоляционные материалы. Сопротивление проводников и электрическая прочность диэлектриков 1.6. Направления токов, напряжений и э.д.с., единицы их измерения 1.7. Некоторые особенности использования законов Ома и Кирхгофа при расчете и анализе электрических цепей 1.8. Нагревание элементов электрических цепей 1.9. Режимы работы элементов электрических цепей 1.10. Электрические цепи с одним источником энергии и пассивными (резистивными) элементами 1.11. Понятие об источнике тока 1.12. Неразветвленная электрическая цепь с одним источником энергии и активным приемником 1.13. Уравнение баланса мощностей электрических цепей 1.14. Разветвленные электрические схемы с несколькими источниками 1.15. Способы соединения источников электрической энергии 1.16. Нелинейные электрические цепи постоянного тока 1.17. Мостовые электрические цепи 1.18, Понятие об электрическом моделировании
Глава II

Глава II. ЭЛЕКТРИЧЕСКИЕ ЦЕПИ СИНУСОИДАЛЬНОГО ТОКА

2.1. Получение синусоидальной эдс. Основные соотношения 2.2. Действующее и среднее значения синусоидальных тока, эдс и напряжения 2.3 Векторные диаграммы 2.4. Цепь, содержащая резистивный элемент с активным сопротивлением r 2.5. Цепь, содержащая индуктивный элемент с индуктивностью L 2.6. Цепь, содержащая емкостный элемент с емкостью С 2.7. Цепь, содержащая катушку с активным сопротивлением r и индуктивностью L 2.8. Цепь, содержащая резистивный и емкостный элементы 2.9. Последовательное соединение r, L и С 2.10. Активная, реактивная и полная мощности цепи 2.11. Законы Кирхгофа в векторной форме 2.12. Резонанс напряжений 2.13. Разветвление цепи 2.14. Резонанс токов 2.15. Понятие о круговых диаграммах 2.16. Расчет синусоидальных цепей с использованикм комплексных чисел 2.17. Изображение напряжений и токов комплексными числами и векторами на комплексной плоскости 2.18. Комплексные значения полных сопротивлений и проводимостей цепи. Закон Ома в комплексной форме 2.19. Законы Кирхгофа в коиплексной форме 2.20. Выражение мощности в комплексной форме 2.21. Расчет сложных цепей 2.22. Цепи, связанные взаимной индукцией
Глава VI

Глава VI. ЭЛЕКТРОМАГНИТНЫЕ УСТРОЙСТВА
А. МАГНИТНЫЕ ЦЕПИ С ПОСТОЯННОЙ МАГНИТОДВИЖУЩЕЙ СИЛОЙ

6.1. Понятие об электромагнитных устройствах и магнитных цепях 6.2. Основные величины, используемые при расчете и анализе магнитных цепей. Задачи расчета и анализа 6.3. Свойства ферромагнитных материалов 6.4. Допущения и особенности использования основных законов магнитных цепей при расчете и анализе 6.5. Неразветвленные магнитные цепи 6.6. Неразветвленные магнитные цепи с постоянными магнитами 6.7. Разветвленные магнитные цепи 6.8. Основы расчета намагничивающих обмоток 6.9. Тяговое усилие в электромагнитных устройствах

Глава VI. ЭЛЕКТРОМАГНИТНЫЕ УСТРОЙСТВА
Б. МАГНИТНЫЕ ЦЕПИ С ПЕРЕМЕННОЙ МАГНИТОДВИЖУЩЕЙ СИЛОЙ

6.10. Явления, происходящие в магнитных цепях электромагнитных устройств переменного тока, и некоторые их конструктивные особенности 6.11. Формы кривых ЭДС е, магнитного потока Ф, тока i имгновенной мощности ρ идеализированной обмотки 6. 12. Вольт-амперные характеристики идеализированной обмотки 6.13. Эквивалентный ток и векторная диаграмма идеализированной обмотки 6.14. Схема замещения идеализированной обмотки и параметры схемы замещения 6.15. Схема замещения, векторные диаграммы и мощности реальной обмотки с ферромагнитным магнитопроводом 6.16. Определение тока, мощностей, эквивалентных соротивлений и угла сдвига фаз между напряжением и током реальной обмотки 6.17. феррорезонансный стабилизатор напряжения

Глава VI. ЭЛЕКТРОМАГНИТНЫЕ УСТРОЙСТВА
В. МАГНИТНЫЕ ЦЕПИ С ПОСТОЯННОЙ И ПЕРЕМЕННОЙ МАГНИТОДВИЖУЩИМИ СИЛАМИ

6.18. Понятие о дросселях насыщения и магнитных усилителях 6.19. Устройство МУ 6.20. Принцип действия МУ 6.21. Соотношения между токами и характеристика управления МУ 6.22. Коэффициенты усиления МУ 6.23. Обратные связи в МУ 6.24. Смещение в МУ 6.25. Понятие о двухтактных и трехфазных МУ
Глава IX

Глава IX. МАШИНЫ ПОСТОЯННОГО ТОКА

9.1. Назначение и устройство машин постоянного тока 9.2. Краткие сведения об обмотках якорей. Принцип действия машин постоянного тока 9.3. ЭДС якоря и электромагнитный момент машин постоянного тока 9.4. Явление реакции якоря в машинах постоянного тока 9.5. Явление коммутации в машинах постоянного тока 9.6. Классификация генераторов постоянного тока по способу возбуждения. Схемы включения генераторов 9.7. Свойства и характеристики генераторов независимого возбуждения 9.8. Свойства и характеристики генераторов параллельного возбуждения 9.9. Свойства и характеристики генераторов смешанного возбуждения 9.10. Сравнительная оценка и технические данные генераторов постоянного тока 9.11. Классификация двигателей по способу возбуждения. Схемы включения двигателей и положительные направления частоты вращения, момента, токов и других величин 9.12. Зависимости токов от нагрузки двигателей. Соотношения между токами 9.13. Зависимости магнитного потока от тока якоря двигателей 9.14. Зависимости момента от тока якоря. Перегрузочная способность двигателей 9.15. Соотношение между напряжением, ЭДС и падением напряжения в сопротивлениях цепи якоря. Формула тока якоря 9.16. Естественные механические и электромеханические характеристики двигателей 9.17. Пуск двигателей 9.18. Регулирование частоты вращения двигателей 9.19. Тормозные режимы работы двигателей 9.20. Потери мощности и КПД машин постоянного тока 9.21. Сравнительная оценка и технические данные двигателей постоянного тока 9.22. Универсальные коллекторные двигатели 9.23. Микродвигатели постоянного тока
Глава X

Глава X.

10.1. Устройство асинхронного двигателя трехфазного тока 10.2. Вращающееся магнитное поле 10.3. Принцип действия асинхронного двигателя 10.4. ЭДС обмотки статора 10.5. ЭДС, частота тока ротора, скольжение 10.6. Индуктивные сопротивления обмоток статора и ротора 10.7. Ток и эквивалентная схема фазы обмотки ротора 10.8. Магнитодвижущие силы оьмоток статора и ротора. Ток обмотки статора 10.9. Электромагнитная мощность и потери в асинхронном двигателе 10.10. Момент, развиваемый двигателем 10.11. Схема замещения асинхронного двигателя 10.12. Механическая характеристика асинхронного двигателя 10.13. Паспортные данные двигателя. Расчет и построение механической характеристики 10.14. Пуск асинхронных двигателей 10.15. Двигатели с улучшенными пусковыми свойствами 10.16. Регулирование частоты вращения 10.17. Тормозные режимы работы 10.18. Энергетические показатели асинхронного двигателя 10.19. Однофазные асинхронные двигатели 10.20. Асинхронный тахогенератор 10.21. Сельсины 10.22. Вращающийся трансформатор 10.23. Понятие о линейном трехфазном асинхронном двигателе

Глава   восьмая
ТРАНСФОРМАТОРЫ

8.8. ПАРАЛЛЕЛЬНАЯ  РАБОТА ТРАНСФОРМАТОРОВ

Для преобразования электрической энергии высокого напряжения на территории отдельных промышленных предприятий, цехов или рядом с ними устанавливаются трансформаторы, понижающие напряжение до 220, 380 или 500 В, при котором работают большинство потребителей.

С целью сокращения длины проводов низковольтных сетей, а они имеют значительное сечение, и бесперебойного снабжения электроэнергией приемников целесообразно устанавливать не один трансформатор на один цех или промышленное предприяие, а несколько и включить их параллельно. При аварийном выходе из строя или профилактическом ремонте одного из них остальные обеспечат электроэнергией приемники. С той же целью бесперебойного снабжения промышленных предприятий на электрических станциях устанавливаются несколько трансформаторов, включенных параллельно. На рис. 8.18, а изображена схема двух параллельно включенных трехфазных трансформаторов.

Рис. 8.18. Параллельное соединение трехфазных трансформаторов (а), векторные диаграммы (б) к пояснению группы соединения обмоток трансформатора Y/Y

Для нормальной работы параллельно включенных трансформаторов необходимо, чтобы при холостом ходе в их обмотках не возникало так называемых уравнительных токов — это будет при условии, если линейные напряжения первичных и вторичных обмоток трансформаторов соответственно одинаковы по модулю и вторичные линейные напряжения совпадают по фазе, т. е. Uab(1) = Uab(2). Действительно, из уравнения электрического состояния вторичной цепи параллельно включенных трансформаторов, составленного по второму закону Кирхгофа,

Ua(1) - Ub(1) + Ub(2) - Ua(2) - Iyp(Za(1) + Zb(1) + Za(2) + Zb(2)) = 0

вытекает, что

Iyp = Uab(1) - Uab(2) ,
4Z
и если Uab(1) = Uab(2), то Iур = 0.

Указанные условия выполняются, если трансформаторы имеют одинаковые схемы соединения первичных и вторичных обмоток и схемы образованы одинаковым способом — звездой: нулевая точка выполнена путем объединения или концов (рис. 18. а), или начал обмоток; треугольником: начало обмотки фазы А соединено с концом обмотки фазы В, начало обмотки фазы В — с концом обмотки фазы С и начало обмотки фазы С — с концом обмотки фазы А (рис. 8.19, а), или конец обмотки фазы А с началом обмотки фазы В и т. д. Все это выражено в группе соединения трансформатора, указанной в его паспорте. Группа соединения определяется углом между векторами линейных напряжений первичной и вторичной обмоток трансформатора. В паспорте трансформатора группа соединений указывается не значением угла, а временем, которое будут показывать часы, когда угол между стрелками часов соответствует углу между линейными напряжениями первичной и вторичной обмоток.

Рис.  8.19.   К  пояснению  группы  соединения  при  соединении  обмо­ток трансформатора   Y/Δ
Рис. 8.20. Упрощенная схема замещения двух параллельно включенных трансформаторов
Для этого совмещают вектор линейного напряжения первичной обмотки с минутной стрелкой часов и устанавливают ее на цифре 12, а вектор линейного напряжения вторичной обмотки совмещают с часовой стрелкой. Например, при соединении обмоток Y/Y, как изображено на рис. 8.18, а, векторы линейных напряжений совпадают (рис. 8.18, б) — это соответствует 12 часам. Группа соединения трансформатора 12, и на его паспорте будет написано Y/Y-12. Когда первичная обмотка соединена звездой, а вторичная — треугольником, как изображено на рис. 8.19, а, из векторной диаграммы рис. 8.19, б следует, что будет группа соединения 11.

В Советском Союзе выпускаются трансформаторы трех групп со­единения Y/Y-12, Y/YN-12, Y/Δ-11.

Для того чтобы нагрузка между параллельно работающими трансформаторами распределялась пропорционально их номинальным мощностям, трансформаторы должны иметь одинаковое значение напряжения короткого замыкания.

Из упрощенной схемы замещений двух параллельно включенных трансформаторов (рис. 8.20) следует, что

Uк = I'2(1)zк(1) = I'2(2)zк(2) ,

откуда
I'2(1) =zк(2) =I2(1) .
I'2(2) zк(1) I2(2)

Если трансформаторы имеют одинаковые значения Uк

Uк(1) = I2н(1)zк(1) = Uк(2) = I'2н(2)zк(2)Uк ,

то
I'2(1) =I2(1) =I2н(1) .
I'2(2) I2(2) I2н(2)

Параллельно   включенные   трансформаторы   имеют   одинаковые значения первичных и вторичных напряжений, поэтому

I2(1) =I2н(1)U3 =Sн(1) .
I2(2) I2н(2)U3 Sн(2)

Условия нормальной параллельной работы однофазных трансформаторов те же, что и трехфазных. Линейное напряжение однофазного трансформатора есть напряжение между началом и концом соответствующей обмотки.

 [an error occurred while processing this directive]