[an error occurred while processing this directive]
Все справочники Предисловие Введение
Глава I

Глава I. ЭЛЕКТРИЧЕСКИЕ ЦЕПИ ПОСТОЯННОГО ТОКА

1.1. Получение и области применений постоянного тока 1.2. Элементы электротехнических установок электрические цепи и схемы 1.3. Задачи расчета и анализа электрических цепей. Параметры, используемые при расчете и анализе 1.4. Некоторые условные обозначения и классификация электрических цепей. Понятие о двухполюсниках 1.5. Проводниковые и электроизоляционные материалы. Сопротивление проводников и электрическая прочность диэлектриков 1.6. Направления токов, напряжений и э.д.с., единицы их измерения 1.7. Некоторые особенности использования законов Ома и Кирхгофа при расчете и анализе электрических цепей 1.8. Нагревание элементов электрических цепей 1.9. Режимы работы элементов электрических цепей 1.10. Электрические цепи с одним источником энергии и пассивными (резистивными) элементами 1.11. Понятие об источнике тока 1.12. Неразветвленная электрическая цепь с одним источником энергии и активным приемником 1.13. Уравнение баланса мощностей электрических цепей 1.14. Разветвленные электрические схемы с несколькими источниками 1.15. Способы соединения источников электрической энергии 1.16. Нелинейные электрические цепи постоянного тока 1.17. Мостовые электрические цепи 1.18, Понятие об электрическом моделировании
Глава II

Глава II. ЭЛЕКТРИЧЕСКИЕ ЦЕПИ СИНУСОИДАЛЬНОГО ТОКА

2.1. Получение синусоидальной эдс. Основные соотношения 2.2. Действующее и среднее значения синусоидальных тока, эдс и напряжения 2.3 Векторные диаграммы 2.4. Цепь, содержащая резистивный элемент с активным сопротивлением r 2.5. Цепь, содержащая индуктивный элемент с индуктивностью L 2.6. Цепь, содержащая емкостный элемент с емкостью С 2.7. Цепь, содержащая катушку с активным сопротивлением r и индуктивностью L 2.8. Цепь, содержащая резистивный и емкостный элементы 2.9. Последовательное соединение r, L и С 2.10. Активная, реактивная и полная мощности цепи 2.11. Законы Кирхгофа в векторной форме 2.12. Резонанс напряжений 2.13. Разветвление цепи 2.14. Резонанс токов 2.15. Понятие о круговых диаграммах 2.16. Расчет синусоидальных цепей с использованикм комплексных чисел 2.17. Изображение напряжений и токов комплексными числами и векторами на комплексной плоскости 2.18. Комплексные значения полных сопротивлений и проводимостей цепи. Закон Ома в комплексной форме 2.19. Законы Кирхгофа в коиплексной форме 2.20. Выражение мощности в комплексной форме 2.21. Расчет сложных цепей 2.22. Цепи, связанные взаимной индукцией
Глава VI

Глава VI. ЭЛЕКТРОМАГНИТНЫЕ УСТРОЙСТВА
А. МАГНИТНЫЕ ЦЕПИ С ПОСТОЯННОЙ МАГНИТОДВИЖУЩЕЙ СИЛОЙ

6.1. Понятие об электромагнитных устройствах и магнитных цепях 6.2. Основные величины, используемые при расчете и анализе магнитных цепей. Задачи расчета и анализа 6.3. Свойства ферромагнитных материалов 6.4. Допущения и особенности использования основных законов магнитных цепей при расчете и анализе 6.5. Неразветвленные магнитные цепи 6.6. Неразветвленные магнитные цепи с постоянными магнитами 6.7. Разветвленные магнитные цепи 6.8. Основы расчета намагничивающих обмоток 6.9. Тяговое усилие в электромагнитных устройствах

Глава VI. ЭЛЕКТРОМАГНИТНЫЕ УСТРОЙСТВА
Б. МАГНИТНЫЕ ЦЕПИ С ПЕРЕМЕННОЙ МАГНИТОДВИЖУЩЕЙ СИЛОЙ

6.10. Явления, происходящие в магнитных цепях электромагнитных устройств переменного тока, и некоторые их конструктивные особенности 6.11. Формы кривых ЭДС е, магнитного потока Ф, тока i имгновенной мощности ρ идеализированной обмотки 6. 12. Вольт-амперные характеристики идеализированной обмотки 6.13. Эквивалентный ток и векторная диаграмма идеализированной обмотки 6.14. Схема замещения идеализированной обмотки и параметры схемы замещения 6.15. Схема замещения, векторные диаграммы и мощности реальной обмотки с ферромагнитным магнитопроводом 6.16. Определение тока, мощностей, эквивалентных соротивлений и угла сдвига фаз между напряжением и током реальной обмотки 6.17. феррорезонансный стабилизатор напряжения

Глава VI. ЭЛЕКТРОМАГНИТНЫЕ УСТРОЙСТВА
В. МАГНИТНЫЕ ЦЕПИ С ПОСТОЯННОЙ И ПЕРЕМЕННОЙ МАГНИТОДВИЖУЩИМИ СИЛАМИ

6.18. Понятие о дросселях насыщения и магнитных усилителях 6.19. Устройство МУ 6.20. Принцип действия МУ 6.21. Соотношения между токами и характеристика управления МУ 6.22. Коэффициенты усиления МУ 6.23. Обратные связи в МУ 6.24. Смещение в МУ 6.25. Понятие о двухтактных и трехфазных МУ
Глава IX

Глава IX. МАШИНЫ ПОСТОЯННОГО ТОКА

9.1. Назначение и устройство машин постоянного тока 9.2. Краткие сведения об обмотках якорей. Принцип действия машин постоянного тока 9.3. ЭДС якоря и электромагнитный момент машин постоянного тока 9.4. Явление реакции якоря в машинах постоянного тока 9.5. Явление коммутации в машинах постоянного тока 9.6. Классификация генераторов постоянного тока по способу возбуждения. Схемы включения генераторов 9.7. Свойства и характеристики генераторов независимого возбуждения 9.8. Свойства и характеристики генераторов параллельного возбуждения 9.9. Свойства и характеристики генераторов смешанного возбуждения 9.10. Сравнительная оценка и технические данные генераторов постоянного тока 9.11. Классификация двигателей по способу возбуждения. Схемы включения двигателей и положительные направления частоты вращения, момента, токов и других величин 9.12. Зависимости токов от нагрузки двигателей. Соотношения между токами 9.13. Зависимости магнитного потока от тока якоря двигателей 9.14. Зависимости момента от тока якоря. Перегрузочная способность двигателей 9.15. Соотношение между напряжением, ЭДС и падением напряжения в сопротивлениях цепи якоря. Формула тока якоря 9.16. Естественные механические и электромеханические характеристики двигателей 9.17. Пуск двигателей 9.18. Регулирование частоты вращения двигателей 9.19. Тормозные режимы работы двигателей 9.20. Потери мощности и КПД машин постоянного тока 9.21. Сравнительная оценка и технические данные двигателей постоянного тока 9.22. Универсальные коллекторные двигатели 9.23. Микродвигатели постоянного тока
Глава X

Глава X.

10.1. Устройство асинхронного двигателя трехфазного тока 10.2. Вращающееся магнитное поле 10.3. Принцип действия асинхронного двигателя 10.4. ЭДС обмотки статора 10.5. ЭДС, частота тока ротора, скольжение 10.6. Индуктивные сопротивления обмоток статора и ротора 10.7. Ток и эквивалентная схема фазы обмотки ротора 10.8. Магнитодвижущие силы оьмоток статора и ротора. Ток обмотки статора 10.9. Электромагнитная мощность и потери в асинхронном двигателе 10.10. Момент, развиваемый двигателем 10.11. Схема замещения асинхронного двигателя 10.12. Механическая характеристика асинхронного двигателя 10.13. Паспортные данные двигателя. Расчет и построение механической характеристики 10.14. Пуск асинхронных двигателей 10.15. Двигатели с улучшенными пусковыми свойствами 10.16. Регулирование частоты вращения 10.17. Тормозные режимы работы 10.18. Энергетические показатели асинхронного двигателя 10.19. Однофазные асинхронные двигатели 10.20. Асинхронный тахогенератор 10.21. Сельсины 10.22. Вращающийся трансформатор 10.23. Понятие о линейном трехфазном асинхронном двигателе

Глава   девятая
МАШИНЫ  ПОСТОЯННОГО ТОКА

9.1. НАЗНАЧЕНИЕ  И УСТРОЙСТВО МАШИН ПОСТОЯННОГО ТОКА

Машины постоянного тока используют в качестве генераторов и двигателей.
Электрическая энергия постоянного тока, вырабатываемая генераторами, служит для питания двигателей постоянного тока, электролитических ванн, электромагнитов различного назначения, аппаратуры управления и контроля и т. д. В настоящее время генераторы постоянного тока во многих установках заменяют полупроводниковыми преобразователями переменного тока в постоянный.

Двигатели постоянного тока применяют на транспорте для привода некоторых металлорежущих станков, прокатных станов, подъемно-транспортных машин, экскаваторов и т. д. Одной из главнейших причин применения двигателей постоянного тока вместо наиболее широко распространенных асинхронных двигателей (см. гл. 10) является возможность плавного регулирования частоты вращения в широком диапазоне и получения желаемых механических характеристик n(М) (см. § 9.18).

Рис. 9 1. Устройство (а) и якорь (б) машины постоянного тока

Генераторы и двигатели постоянного тока устроены одинаково. Неподвижная часть машины, называемая статором (рис. 9.1, а), состоит из массивного стального корпуса 1, к которому прикреплены главные полюсы 2 и дополнительные полюсы 6. Исходя из технологических и других соображений главные полюсы изготовляют чаще из отдельных стальных листов; иногда их изготовляют сплошными. Из отдельных листов либо сплошными изготовляют и дополнительные полюсы. Перечисленные детали статора являются также и деталями его магнитопровода. На главных полюсах размещают катушки одной или нескольких обмоток возбуждения 3, на дополнительных полюсах — катушки 7 обмотки дополнительных полюсов.

В подшипниковых щитах, прикрепленных с торцевых сторон к корпусу, расположены подшипники, несущие вал 4 вращающейся части машины, называемой якорем (рис. 9.1, а и б). На валу закреплен цилиндрический сердечник якоря 5, который для уменьшения потерь мощности от перемагничивания и вихревых токов набирают из стальных листов. В пазах, расположенных по поверхности якоря, уло­жена обмотка якоря 8. Так же, как обмотку возбуждения и обмотку дополнительных полюсов, ее изготовляют из медного изолированного провода. Выводы от обмотки якоря присоединяют к расположенному на валу коллектору 9. Последний представляет собой цилиндр, состоящий из медных пластин, изолированных друг от друга и от вала. К коллектору с помощью пружин прижимаются графитные, угольно-графитные или металлографитные щетки 10. Щетки расположены в специальных щеткодержателях.

Обмотка возбуждения машины питается постоянным током и служит для создания основного магнитного поля, показанного на рис 9.1, а условно с помощью двух линий магнитной индукции, из­ображенных пунктиром.

Главные полюсы имеют полюсные наконечники 11, служащие для получения по большей части окружности якоря одного и того же воздушного зазора между сердечником якоря и главными полюсами. Это необходимо для получения на большей части окружности якоря одной и той же магнитной индукции, а в проводниках обмотки якоря — постоянной по значению ЭДС. Дополнительные полюсы предназначены для уменьшения искрения под щетками (см. § 9.5).

С помощью коллектора и щеток вращающаяся обмотка якоря соединяется с внешней электрической цепью. О других важных назначениях коллектора и щеток будет говориться в § 9.2.

На рис. 9.1, а показана машина постоянного тока с двумя главными полюсами. В зависимости от мощности и напряжения машины могут иметь и большее число полюсов. При этом соответственно увеличиваются число комплектов щеток и дополнительных полюсов. Крепление машины к фундаменту, специальным салазкам или металлоконструкции осуществляется с помощью лап 12. Корпус некоторых машин снабжается для крепления специальными фланцами.

 [an error occurred while processing this directive]