[an error occurred while processing this directive]
Все справочники Предисловие Введение
Глава I

Глава I. ЭЛЕКТРИЧЕСКИЕ ЦЕПИ ПОСТОЯННОГО ТОКА

1.1. Получение и области применений постоянного тока 1.2. Элементы электротехнических установок электрические цепи и схемы 1.3. Задачи расчета и анализа электрических цепей. Параметры, используемые при расчете и анализе 1.4. Некоторые условные обозначения и классификация электрических цепей. Понятие о двухполюсниках 1.5. Проводниковые и электроизоляционные материалы. Сопротивление проводников и электрическая прочность диэлектриков 1.6. Направления токов, напряжений и э.д.с., единицы их измерения 1.7. Некоторые особенности использования законов Ома и Кирхгофа при расчете и анализе электрических цепей 1.8. Нагревание элементов электрических цепей 1.9. Режимы работы элементов электрических цепей 1.10. Электрические цепи с одним источником энергии и пассивными (резистивными) элементами 1.11. Понятие об источнике тока 1.12. Неразветвленная электрическая цепь с одним источником энергии и активным приемником 1.13. Уравнение баланса мощностей электрических цепей 1.14. Разветвленные электрические схемы с несколькими источниками 1.15. Способы соединения источников электрической энергии 1.16. Нелинейные электрические цепи постоянного тока 1.17. Мостовые электрические цепи 1.18, Понятие об электрическом моделировании
Глава II

Глава II. ЭЛЕКТРИЧЕСКИЕ ЦЕПИ СИНУСОИДАЛЬНОГО ТОКА

2.1. Получение синусоидальной эдс. Основные соотношения 2.2. Действующее и среднее значения синусоидальных тока, эдс и напряжения 2.3 Векторные диаграммы 2.4. Цепь, содержащая резистивный элемент с активным сопротивлением r 2.5. Цепь, содержащая индуктивный элемент с индуктивностью L 2.6. Цепь, содержащая емкостный элемент с емкостью С 2.7. Цепь, содержащая катушку с активным сопротивлением r и индуктивностью L 2.8. Цепь, содержащая резистивный и емкостный элементы 2.9. Последовательное соединение r, L и С 2.10. Активная, реактивная и полная мощности цепи 2.11. Законы Кирхгофа в векторной форме 2.12. Резонанс напряжений 2.13. Разветвление цепи 2.14. Резонанс токов 2.15. Понятие о круговых диаграммах 2.16. Расчет синусоидальных цепей с использованикм комплексных чисел 2.17. Изображение напряжений и токов комплексными числами и векторами на комплексной плоскости 2.18. Комплексные значения полных сопротивлений и проводимостей цепи. Закон Ома в комплексной форме 2.19. Законы Кирхгофа в коиплексной форме 2.20. Выражение мощности в комплексной форме 2.21. Расчет сложных цепей 2.22. Цепи, связанные взаимной индукцией
Глава VI

Глава VI. ЭЛЕКТРОМАГНИТНЫЕ УСТРОЙСТВА
А. МАГНИТНЫЕ ЦЕПИ С ПОСТОЯННОЙ МАГНИТОДВИЖУЩЕЙ СИЛОЙ

6.1. Понятие об электромагнитных устройствах и магнитных цепях 6.2. Основные величины, используемые при расчете и анализе магнитных цепей. Задачи расчета и анализа 6.3. Свойства ферромагнитных материалов 6.4. Допущения и особенности использования основных законов магнитных цепей при расчете и анализе 6.5. Неразветвленные магнитные цепи 6.6. Неразветвленные магнитные цепи с постоянными магнитами 6.7. Разветвленные магнитные цепи 6.8. Основы расчета намагничивающих обмоток 6.9. Тяговое усилие в электромагнитных устройствах

Глава VI. ЭЛЕКТРОМАГНИТНЫЕ УСТРОЙСТВА
Б. МАГНИТНЫЕ ЦЕПИ С ПЕРЕМЕННОЙ МАГНИТОДВИЖУЩЕЙ СИЛОЙ

6.10. Явления, происходящие в магнитных цепях электромагнитных устройств переменного тока, и некоторые их конструктивные особенности 6.11. Формы кривых ЭДС е, магнитного потока Ф, тока i имгновенной мощности ρ идеализированной обмотки 6. 12. Вольт-амперные характеристики идеализированной обмотки 6.13. Эквивалентный ток и векторная диаграмма идеализированной обмотки 6.14. Схема замещения идеализированной обмотки и параметры схемы замещения 6.15. Схема замещения, векторные диаграммы и мощности реальной обмотки с ферромагнитным магнитопроводом 6.16. Определение тока, мощностей, эквивалентных соротивлений и угла сдвига фаз между напряжением и током реальной обмотки 6.17. феррорезонансный стабилизатор напряжения

Глава VI. ЭЛЕКТРОМАГНИТНЫЕ УСТРОЙСТВА
В. МАГНИТНЫЕ ЦЕПИ С ПОСТОЯННОЙ И ПЕРЕМЕННОЙ МАГНИТОДВИЖУЩИМИ СИЛАМИ

6.18. Понятие о дросселях насыщения и магнитных усилителях 6.19. Устройство МУ 6.20. Принцип действия МУ 6.21. Соотношения между токами и характеристика управления МУ 6.22. Коэффициенты усиления МУ 6.23. Обратные связи в МУ 6.24. Смещение в МУ 6.25. Понятие о двухтактных и трехфазных МУ
Глава IX

Глава IX. МАШИНЫ ПОСТОЯННОГО ТОКА

9.1. Назначение и устройство машин постоянного тока 9.2. Краткие сведения об обмотках якорей. Принцип действия машин постоянного тока 9.3. ЭДС якоря и электромагнитный момент машин постоянного тока 9.4. Явление реакции якоря в машинах постоянного тока 9.5. Явление коммутации в машинах постоянного тока 9.6. Классификация генераторов постоянного тока по способу возбуждения. Схемы включения генераторов 9.7. Свойства и характеристики генераторов независимого возбуждения 9.8. Свойства и характеристики генераторов параллельного возбуждения 9.9. Свойства и характеристики генераторов смешанного возбуждения 9.10. Сравнительная оценка и технические данные генераторов постоянного тока 9.11. Классификация двигателей по способу возбуждения. Схемы включения двигателей и положительные направления частоты вращения, момента, токов и других величин 9.12. Зависимости токов от нагрузки двигателей. Соотношения между токами 9.13. Зависимости магнитного потока от тока якоря двигателей 9.14. Зависимости момента от тока якоря. Перегрузочная способность двигателей 9.15. Соотношение между напряжением, ЭДС и падением напряжения в сопротивлениях цепи якоря. Формула тока якоря 9.16. Естественные механические и электромеханические характеристики двигателей 9.17. Пуск двигателей 9.18. Регулирование частоты вращения двигателей 9.19. Тормозные режимы работы двигателей 9.20. Потери мощности и КПД машин постоянного тока 9.21. Сравнительная оценка и технические данные двигателей постоянного тока 9.22. Универсальные коллекторные двигатели 9.23. Микродвигатели постоянного тока
Глава X

Глава X.

10.1. Устройство асинхронного двигателя трехфазного тока 10.2. Вращающееся магнитное поле 10.3. Принцип действия асинхронного двигателя 10.4. ЭДС обмотки статора 10.5. ЭДС, частота тока ротора, скольжение 10.6. Индуктивные сопротивления обмоток статора и ротора 10.7. Ток и эквивалентная схема фазы обмотки ротора 10.8. Магнитодвижущие силы оьмоток статора и ротора. Ток обмотки статора 10.9. Электромагнитная мощность и потери в асинхронном двигателе 10.10. Момент, развиваемый двигателем 10.11. Схема замещения асинхронного двигателя 10.12. Механическая характеристика асинхронного двигателя 10.13. Паспортные данные двигателя. Расчет и построение механической характеристики 10.14. Пуск асинхронных двигателей 10.15. Двигатели с улучшенными пусковыми свойствами 10.16. Регулирование частоты вращения 10.17. Тормозные режимы работы 10.18. Энергетические показатели асинхронного двигателя 10.19. Однофазные асинхронные двигатели 10.20. Асинхронный тахогенератор 10.21. Сельсины 10.22. Вращающийся трансформатор 10.23. Понятие о линейном трехфазном асинхронном двигателе

Глава   одиннадцатая
СИНХРОННЫЕ МАШИНЫ

11.3. СХЕМА ВКЛЮЧЕНИЯ И ОСНОВНЫЕ ЗАВИСИМОСТИ СИНХРОННОГО ГЕНЕРАТОРА

Схема включения синхронного генератора приведена на рис. 11.4. Трехфазная обмотка якоря генератора ОЯ подключается к приемникам электрической энергии, которые в зависимости от их номинального напряжения и напряжения генератора могут быть соединены как звездой, так и треугольником. Под сопротивлениями zп , rп и хп на рис. 11.4 следует понимать эквивалентные сопротивления группы приемников, получающих питание от генератора.

В цепь обмотки возбуждения ОВ генератора, питаемой постоянным током, включен реостат rp , служащий для регулирования тока возбуждения Iв , а в конечном итоге — напряжения U на выводах обмотки якоря генератора.

Для упрощения анализа соотношений синхронного генератора, как и двигателя, будем считать, что мы имеем машину с неявновыраженными полюсами, ферромагнитные материалы которой при любых режимах работы остаются ненасыщенными. При таком допущении можно считать, что в машине существуют независимо три магнитных потока, каждый из которых прямо пропорционален соответствующей МДС: основной магнитный поток Ф0, прямо пропорциональный МДС обмотки возбуждения, потоки рассеяния Фр и реакции якоря Фя , прямо пропорциональные МДС обмотки якоря.

Рис. 11.4. Простейшая схема включения синхронного генератора

С целью построения векторных диаграмм и выявления свойств синхронного генератора необходимо прежде всего составить уравнение по второму закону Кирхгофа для цепи якоря двигателя. При составлении уравнения необходимо учесть следующее.

Под действием МДС обмотки возбуждения возникает основной магнитный поток Фо, которым в каждой фазе обмотки якоря индуктируется ЭДС Е0. Ток якоря I вызывает в активном сопротивлении r фазы падение напряжения Ir . МДС обмотки якоря возбуждает поток рассеяния Фр , которым в обмотке якоря индуктируется ЭДС самоиндукции Ер . Последнюю можно заменить падением напряжения Ер = р , где хр = ωLp и Lp — индуктивное сопротивление и индуктивность, обусловленные полем рассеяния. Как известно, МДС обмотки якоря возбуждается магнитный поток Фя , под действием которого изменяется результирующее поле машины. Явление реакции якоря можно учесть, введя в уравнение ЭДС Ея , индуктируемую в обмотке якоря полем якоря или заменяющим ее падением напряжения Ея = Iхя , где хя = ωLя и Lя — индуктивное сопроти­вление и индуктивность, обусловленные полем реакции якоря. ЭДС Ер и Ея могут быть заменены эквивалентной ЭДС якоря Ея1, которая равна
Eя1 = Ер + Ея = I(хр + хя) = с .

Сопротивление хс = хр + хя называется синхронным сопротивлением. При сделанных ранее допущениях при любых нагрузках генератора следует считать хс = const.

Для упрощения дальнейшего изложения условимся считать, что эквивалентной ЭДС Eя1 соответствует некоторый вращающийся магнитный поток якоря Фя1, эквивалентный в отношении создаваемой им ЭДС потокам Фр и Фя.

Учитывая сказанное, для любой из фаз обмотки якоря (см. рис. 11.4) можно написать: Е0 = I(r + iIxc + U).

Обычно сопротивление r значительно меньше хс . Поэтому при качественном анализе явлений в синхронных машинах сопротивление r можно не учитывать.  Тогда

(11,3)

E0 = jIxc + U.

Напряжение на выводах генератора и приемника может быть выражено в соответствии с законом Ома:

U = IZп = Irп + jIxп.

Заменив в (11.3) напряжение его выражением, получим

(11,4)

E0 = jIxc + Irп + jIxп .

Из уравнений (11.4) и (11.3)

(11,5)
I = E0 ;
rп + j(xc + xп)
(11,6)

U = E0 - jIxc .

Углы сдвига фаз между током и напряжением φ, током и ЭДС ψ определяются по формулам

φ = arcsin xп ;    ψ = arcsin xc + xп
zп z

Зная ЭДС, напряжение, ток и углы сдвига фаз, нетрудно найти мощности генератора. Например, электромагнитная мощность Рэм, вырабатываемая генератором, и активная мощность Рφ , отдаваемая им приемнику,

(11,7)

Рэм = 3Е0I cos ψ;

(11,8)

Рφ = 3UI cos φ.

Мощность Рэм отличается от мощности Рφ на значение потерь  мощности   в   активном   сопротивлении   обмотки   якоря:

Рэм = Рφ + ΔРя = 3UI cos φ + 3I2rя .

Как следует из приведенных формул, ток, напряжение, углы сдвига фаз и мощности зависят при заданных значениях Е0 и хс исключительно от значений и характера сопротивлений приемника. Напряжение U на выводах генератора отличается от ЭДС Е0 за счет падения напряжения в сопротивлении хс .

 [an error occurred while processing this directive]