[an error occurred while processing this directive]
Все справочники Предисловие Введение
Глава I

Глава I. ЭЛЕКТРИЧЕСКИЕ ЦЕПИ ПОСТОЯННОГО ТОКА

1.1. Получение и области применений постоянного тока 1.2. Элементы электротехнических установок электрические цепи и схемы 1.3. Задачи расчета и анализа электрических цепей. Параметры, используемые при расчете и анализе 1.4. Некоторые условные обозначения и классификация электрических цепей. Понятие о двухполюсниках 1.5. Проводниковые и электроизоляционные материалы. Сопротивление проводников и электрическая прочность диэлектриков 1.6. Направления токов, напряжений и э.д.с., единицы их измерения 1.7. Некоторые особенности использования законов Ома и Кирхгофа при расчете и анализе электрических цепей 1.8. Нагревание элементов электрических цепей 1.9. Режимы работы элементов электрических цепей 1.10. Электрические цепи с одним источником энергии и пассивными (резистивными) элементами 1.11. Понятие об источнике тока 1.12. Неразветвленная электрическая цепь с одним источником энергии и активным приемником 1.13. Уравнение баланса мощностей электрических цепей 1.14. Разветвленные электрические схемы с несколькими источниками 1.15. Способы соединения источников электрической энергии 1.16. Нелинейные электрические цепи постоянного тока 1.17. Мостовые электрические цепи 1.18, Понятие об электрическом моделировании
Глава II

Глава II. ЭЛЕКТРИЧЕСКИЕ ЦЕПИ СИНУСОИДАЛЬНОГО ТОКА

2.1. Получение синусоидальной эдс. Основные соотношения 2.2. Действующее и среднее значения синусоидальных тока, эдс и напряжения 2.3 Векторные диаграммы 2.4. Цепь, содержащая резистивный элемент с активным сопротивлением r 2.5. Цепь, содержащая индуктивный элемент с индуктивностью L 2.6. Цепь, содержащая емкостный элемент с емкостью С 2.7. Цепь, содержащая катушку с активным сопротивлением r и индуктивностью L 2.8. Цепь, содержащая резистивный и емкостный элементы 2.9. Последовательное соединение r, L и С 2.10. Активная, реактивная и полная мощности цепи 2.11. Законы Кирхгофа в векторной форме 2.12. Резонанс напряжений 2.13. Разветвление цепи 2.14. Резонанс токов 2.15. Понятие о круговых диаграммах 2.16. Расчет синусоидальных цепей с использованикм комплексных чисел 2.17. Изображение напряжений и токов комплексными числами и векторами на комплексной плоскости 2.18. Комплексные значения полных сопротивлений и проводимостей цепи. Закон Ома в комплексной форме 2.19. Законы Кирхгофа в коиплексной форме 2.20. Выражение мощности в комплексной форме 2.21. Расчет сложных цепей 2.22. Цепи, связанные взаимной индукцией
Глава VI

Глава VI. ЭЛЕКТРОМАГНИТНЫЕ УСТРОЙСТВА
А. МАГНИТНЫЕ ЦЕПИ С ПОСТОЯННОЙ МАГНИТОДВИЖУЩЕЙ СИЛОЙ

6.1. Понятие об электромагнитных устройствах и магнитных цепях 6.2. Основные величины, используемые при расчете и анализе магнитных цепей. Задачи расчета и анализа 6.3. Свойства ферромагнитных материалов 6.4. Допущения и особенности использования основных законов магнитных цепей при расчете и анализе 6.5. Неразветвленные магнитные цепи 6.6. Неразветвленные магнитные цепи с постоянными магнитами 6.7. Разветвленные магнитные цепи 6.8. Основы расчета намагничивающих обмоток 6.9. Тяговое усилие в электромагнитных устройствах

Глава VI. ЭЛЕКТРОМАГНИТНЫЕ УСТРОЙСТВА
Б. МАГНИТНЫЕ ЦЕПИ С ПЕРЕМЕННОЙ МАГНИТОДВИЖУЩЕЙ СИЛОЙ

6.10. Явления, происходящие в магнитных цепях электромагнитных устройств переменного тока, и некоторые их конструктивные особенности 6.11. Формы кривых ЭДС е, магнитного потока Ф, тока i имгновенной мощности ρ идеализированной обмотки 6. 12. Вольт-амперные характеристики идеализированной обмотки 6.13. Эквивалентный ток и векторная диаграмма идеализированной обмотки 6.14. Схема замещения идеализированной обмотки и параметры схемы замещения 6.15. Схема замещения, векторные диаграммы и мощности реальной обмотки с ферромагнитным магнитопроводом 6.16. Определение тока, мощностей, эквивалентных соротивлений и угла сдвига фаз между напряжением и током реальной обмотки 6.17. феррорезонансный стабилизатор напряжения

Глава VI. ЭЛЕКТРОМАГНИТНЫЕ УСТРОЙСТВА
В. МАГНИТНЫЕ ЦЕПИ С ПОСТОЯННОЙ И ПЕРЕМЕННОЙ МАГНИТОДВИЖУЩИМИ СИЛАМИ

6.18. Понятие о дросселях насыщения и магнитных усилителях 6.19. Устройство МУ 6.20. Принцип действия МУ 6.21. Соотношения между токами и характеристика управления МУ 6.22. Коэффициенты усиления МУ 6.23. Обратные связи в МУ 6.24. Смещение в МУ 6.25. Понятие о двухтактных и трехфазных МУ
Глава IX

Глава IX. МАШИНЫ ПОСТОЯННОГО ТОКА

9.1. Назначение и устройство машин постоянного тока 9.2. Краткие сведения об обмотках якорей. Принцип действия машин постоянного тока 9.3. ЭДС якоря и электромагнитный момент машин постоянного тока 9.4. Явление реакции якоря в машинах постоянного тока 9.5. Явление коммутации в машинах постоянного тока 9.6. Классификация генераторов постоянного тока по способу возбуждения. Схемы включения генераторов 9.7. Свойства и характеристики генераторов независимого возбуждения 9.8. Свойства и характеристики генераторов параллельного возбуждения 9.9. Свойства и характеристики генераторов смешанного возбуждения 9.10. Сравнительная оценка и технические данные генераторов постоянного тока 9.11. Классификация двигателей по способу возбуждения. Схемы включения двигателей и положительные направления частоты вращения, момента, токов и других величин 9.12. Зависимости токов от нагрузки двигателей. Соотношения между токами 9.13. Зависимости магнитного потока от тока якоря двигателей 9.14. Зависимости момента от тока якоря. Перегрузочная способность двигателей 9.15. Соотношение между напряжением, ЭДС и падением напряжения в сопротивлениях цепи якоря. Формула тока якоря 9.16. Естественные механические и электромеханические характеристики двигателей 9.17. Пуск двигателей 9.18. Регулирование частоты вращения двигателей 9.19. Тормозные режимы работы двигателей 9.20. Потери мощности и КПД машин постоянного тока 9.21. Сравнительная оценка и технические данные двигателей постоянного тока 9.22. Универсальные коллекторные двигатели 9.23. Микродвигатели постоянного тока
Глава X

Глава X.

10.1. Устройство асинхронного двигателя трехфазного тока 10.2. Вращающееся магнитное поле 10.3. Принцип действия асинхронного двигателя 10.4. ЭДС обмотки статора 10.5. ЭДС, частота тока ротора, скольжение 10.6. Индуктивные сопротивления обмоток статора и ротора 10.7. Ток и эквивалентная схема фазы обмотки ротора 10.8. Магнитодвижущие силы оьмоток статора и ротора. Ток обмотки статора 10.9. Электромагнитная мощность и потери в асинхронном двигателе 10.10. Момент, развиваемый двигателем 10.11. Схема замещения асинхронного двигателя 10.12. Механическая характеристика асинхронного двигателя 10.13. Паспортные данные двигателя. Расчет и построение механической характеристики 10.14. Пуск асинхронных двигателей 10.15. Двигатели с улучшенными пусковыми свойствами 10.16. Регулирование частоты вращения 10.17. Тормозные режимы работы 10.18. Энергетические показатели асинхронного двигателя 10.19. Однофазные асинхронные двигатели 10.20. Асинхронный тахогенератор 10.21. Сельсины 10.22. Вращающийся трансформатор 10.23. Понятие о линейном трехфазном асинхронном двигателе

Глава вторая
ЭЛЕКТРИЧЕСКИЕ ЦЕПИ СИНУСОИДАЛЬНОГО ТОКА

2.7.  ЦЕПЬ, СОДЕРЖАЩАЯ КАТУШКУ С АКТИВНЫМ СОПРОТИВЛЕНИЕМ r И ИНДУКТИВНОСТЬЮ L

Реальная катушка (обмотка) любого электротехнического устройства обладает определенным активным сопротивлением r и индуктивностью L. Для удобства анализа таких цепей катушку обычно изображают в виде двух идеальных элементов — резистивного r и индуктивного L, соединенных последовательно (рис. 2.9, а). Используя выводы, вытекающие из анализа идеальных цепей, участок цепи с индуктивностью L будем рассматривать как участок, обладающий индуктивным сопротивлением хL. Уравнение напряжений, составленное по второму закону Кирхгофа для цепи с r и L, имеет вид

u = ur + uL.

Выразив напряжения ur и uL через ток i = Im sin ωt и сопротивления участков цепи r и хL, получим

u = Imr sin ωt + ImxL sin(ωt + π ),
2
Рис. 2.9. Электрическая цепь, содержащая катушку индуктивности r и L (а), ее векторная диаграмма (б), графики мгновенных значений u, i, р (в), треугольники мощностей и сопротивлений (г, д), графики мгновенных значений рa , pL (e)

где ur = Imr sin ωt — напряжение на активном сопротивлении (активное   напряжение),   совпадающее   по   фазе   с   током;   uL = ImxLsin (ωt + π/2) — напряжение на индуктивном сопротивлении   (индуктивное   напряжение),   опережающее   ток   по   фазе на 90°.

На векторной диаграмме (рис. 2.9, б) вектор  Ūr совпадает с вектором тока, а вектор ŪL опережает вектор тока на 90°.

Из диаграммы следует, что вектор напряжения сети равен геометрической сумме векторов Ūr и ŪL:

Ū = Ūr + ŪL,

а его значение

U = Ur2 + UL2.

Выразив напряжения через ток и сопротивления, получим

U = (Ir)2 +(IxL)2 = Ir2 + xL2.

Последнее выражение представляет собой закон Ома цепи r, xL
I = U = U ,
r2 + xL2 z
где z = √r2 + xL2полное сопротивление цепи, Ом.

Из векторной диаграммы следует, что напряжение цепи r, L опережает по фазе ток на угол φ и его мгновенное значение

u = Um sin (ωt + φ)

Графики мгновенных значений напряжения в тока цепи изображены на рис. 2.9, в.

Угол сдвига по фазе φ между напряжением и вызванным им током определяют из соотношения

(2.15)
cos φ = Ur = Ir = r = r .
U Iz z r2 + xL2

Как видно, cos φ и, следовательно, угол φ зависят только от параметров цепи r и xL.

Разделив стороны треугольника напряжений на ток, получим треугольник сопротивлений (рис. 2.9, д), Стороны треугольника сопротивлений представляют собой отрезки, а не векторы, так как сопротивления есть постоянные, не изменяющиеся синусоидально величины.

Мгновенная мощность цепи с r и L равна произведению мгновенных значений напряжения и тока:

р = ui = Im sin ωt Um sin (ωt + φ).

Средняя мощность за период
 
1
T
T  
1
Т
T  
Рср = ui dt = ImUm sin ωt • sin (ωt + φ) dt.
  0   0  

Выразив произведение  синусов  через  разность  косинусов, после почленного интегрирования получим

(2.16)
 
1
T
T
UmIm
2
 
Рср = [cos φ — cos(2ωt + φ)] dt = UI cos φ.
  0  

Подставив в (2.16) вместо cos φ его значение из (2.15), получим

(2.17)
Рср = UI cos φ = UI r = I2r = P.
z

Из (2.17) вытекает, что среднее значение мощности в цепи с r и L есть активная мощность, которая выделяется в активном сопротивлении r в виде теплоты.

График  мгновенной   мощности   изображен   на   рис.   2.9, в.

Для анализа энергетических процессов в цепи r, L мгновенную мощность удобно представить в виде суммы мгновенных значений активной pa = uri и реактивной (индуктивной) pL = uLi мощностей:

p = pa + pL.

Графики pa(t), pL(t) изображены на рис. 2.9, е. График pa(t) аналогичен графику для цепи с активным сопротивлением (см. § 2,4), а график pL(t) — для цепи с индуктивностью L (см. § 2.5).

Таким образом, энергетические процессы в цепи с r, L можно рассматривать как совокупность процессов, происходящих в цепях только с активным сопротивлением r и только с индуктивностью L.

Из графика pa(t) видно, что активная мощность непрерывно поступает  из сети  и выделяется в  активном  сопротивлении в виде теплоты. Она равна

 
1
T
T  
Р= UmrIm sin2 ωt dt = UrI = UI cos φ.
  0  

Мгновенная мощность рL, обусловленная энергией магнитного поля индуктивности, циркулирует между сетью и катушкой. Ее среднее значение за период равно нулю:

 
1
T
T  
π
2
 
РL = UmLIm sin ωt • sin (ωt + ) dt = 0.
  0    
 [an error occurred while processing this directive]