[an error occurred while processing this directive]
Все справочники Предисловие Введение
Глава I

Глава I. ЭЛЕКТРИЧЕСКИЕ ЦЕПИ ПОСТОЯННОГО ТОКА

1.1. Получение и области применений постоянного тока 1.2. Элементы электротехнических установок электрические цепи и схемы 1.3. Задачи расчета и анализа электрических цепей. Параметры, используемые при расчете и анализе 1.4. Некоторые условные обозначения и классификация электрических цепей. Понятие о двухполюсниках 1.5. Проводниковые и электроизоляционные материалы. Сопротивление проводников и электрическая прочность диэлектриков 1.6. Направления токов, напряжений и э.д.с., единицы их измерения 1.7. Некоторые особенности использования законов Ома и Кирхгофа при расчете и анализе электрических цепей 1.8. Нагревание элементов электрических цепей 1.9. Режимы работы элементов электрических цепей 1.10. Электрические цепи с одним источником энергии и пассивными (резистивными) элементами 1.11. Понятие об источнике тока 1.12. Неразветвленная электрическая цепь с одним источником энергии и активным приемником 1.13. Уравнение баланса мощностей электрических цепей 1.14. Разветвленные электрические схемы с несколькими источниками 1.15. Способы соединения источников электрической энергии 1.16. Нелинейные электрические цепи постоянного тока 1.17. Мостовые электрические цепи 1.18, Понятие об электрическом моделировании
Глава II

Глава II. ЭЛЕКТРИЧЕСКИЕ ЦЕПИ СИНУСОИДАЛЬНОГО ТОКА

2.1. Получение синусоидальной эдс. Основные соотношения 2.2. Действующее и среднее значения синусоидальных тока, эдс и напряжения 2.3 Векторные диаграммы 2.4. Цепь, содержащая резистивный элемент с активным сопротивлением r 2.5. Цепь, содержащая индуктивный элемент с индуктивностью L 2.6. Цепь, содержащая емкостный элемент с емкостью С 2.7. Цепь, содержащая катушку с активным сопротивлением r и индуктивностью L 2.8. Цепь, содержащая резистивный и емкостный элементы 2.9. Последовательное соединение r, L и С 2.10. Активная, реактивная и полная мощности цепи 2.11. Законы Кирхгофа в векторной форме 2.12. Резонанс напряжений 2.13. Разветвление цепи 2.14. Резонанс токов 2.15. Понятие о круговых диаграммах 2.16. Расчет синусоидальных цепей с использованикм комплексных чисел 2.17. Изображение напряжений и токов комплексными числами и векторами на комплексной плоскости 2.18. Комплексные значения полных сопротивлений и проводимостей цепи. Закон Ома в комплексной форме 2.19. Законы Кирхгофа в коиплексной форме 2.20. Выражение мощности в комплексной форме 2.21. Расчет сложных цепей 2.22. Цепи, связанные взаимной индукцией
Глава VI

Глава VI. ЭЛЕКТРОМАГНИТНЫЕ УСТРОЙСТВА
А. МАГНИТНЫЕ ЦЕПИ С ПОСТОЯННОЙ МАГНИТОДВИЖУЩЕЙ СИЛОЙ

6.1. Понятие об электромагнитных устройствах и магнитных цепях 6.2. Основные величины, используемые при расчете и анализе магнитных цепей. Задачи расчета и анализа 6.3. Свойства ферромагнитных материалов 6.4. Допущения и особенности использования основных законов магнитных цепей при расчете и анализе 6.5. Неразветвленные магнитные цепи 6.6. Неразветвленные магнитные цепи с постоянными магнитами 6.7. Разветвленные магнитные цепи 6.8. Основы расчета намагничивающих обмоток 6.9. Тяговое усилие в электромагнитных устройствах

Глава VI. ЭЛЕКТРОМАГНИТНЫЕ УСТРОЙСТВА
Б. МАГНИТНЫЕ ЦЕПИ С ПЕРЕМЕННОЙ МАГНИТОДВИЖУЩЕЙ СИЛОЙ

6.10. Явления, происходящие в магнитных цепях электромагнитных устройств переменного тока, и некоторые их конструктивные особенности 6.11. Формы кривых ЭДС е, магнитного потока Ф, тока i имгновенной мощности ρ идеализированной обмотки 6. 12. Вольт-амперные характеристики идеализированной обмотки 6.13. Эквивалентный ток и векторная диаграмма идеализированной обмотки 6.14. Схема замещения идеализированной обмотки и параметры схемы замещения 6.15. Схема замещения, векторные диаграммы и мощности реальной обмотки с ферромагнитным магнитопроводом 6.16. Определение тока, мощностей, эквивалентных соротивлений и угла сдвига фаз между напряжением и током реальной обмотки 6.17. феррорезонансный стабилизатор напряжения

Глава VI. ЭЛЕКТРОМАГНИТНЫЕ УСТРОЙСТВА
В. МАГНИТНЫЕ ЦЕПИ С ПОСТОЯННОЙ И ПЕРЕМЕННОЙ МАГНИТОДВИЖУЩИМИ СИЛАМИ

6.18. Понятие о дросселях насыщения и магнитных усилителях 6.19. Устройство МУ 6.20. Принцип действия МУ 6.21. Соотношения между токами и характеристика управления МУ 6.22. Коэффициенты усиления МУ 6.23. Обратные связи в МУ 6.24. Смещение в МУ 6.25. Понятие о двухтактных и трехфазных МУ
Глава IX

Глава IX. МАШИНЫ ПОСТОЯННОГО ТОКА

9.1. Назначение и устройство машин постоянного тока 9.2. Краткие сведения об обмотках якорей. Принцип действия машин постоянного тока 9.3. ЭДС якоря и электромагнитный момент машин постоянного тока 9.4. Явление реакции якоря в машинах постоянного тока 9.5. Явление коммутации в машинах постоянного тока 9.6. Классификация генераторов постоянного тока по способу возбуждения. Схемы включения генераторов 9.7. Свойства и характеристики генераторов независимого возбуждения 9.8. Свойства и характеристики генераторов параллельного возбуждения 9.9. Свойства и характеристики генераторов смешанного возбуждения 9.10. Сравнительная оценка и технические данные генераторов постоянного тока 9.11. Классификация двигателей по способу возбуждения. Схемы включения двигателей и положительные направления частоты вращения, момента, токов и других величин 9.12. Зависимости токов от нагрузки двигателей. Соотношения между токами 9.13. Зависимости магнитного потока от тока якоря двигателей 9.14. Зависимости момента от тока якоря. Перегрузочная способность двигателей 9.15. Соотношение между напряжением, ЭДС и падением напряжения в сопротивлениях цепи якоря. Формула тока якоря 9.16. Естественные механические и электромеханические характеристики двигателей 9.17. Пуск двигателей 9.18. Регулирование частоты вращения двигателей 9.19. Тормозные режимы работы двигателей 9.20. Потери мощности и КПД машин постоянного тока 9.21. Сравнительная оценка и технические данные двигателей постоянного тока 9.22. Универсальные коллекторные двигатели 9.23. Микродвигатели постоянного тока
Глава X

Глава X.

10.1. Устройство асинхронного двигателя трехфазного тока 10.2. Вращающееся магнитное поле 10.3. Принцип действия асинхронного двигателя 10.4. ЭДС обмотки статора 10.5. ЭДС, частота тока ротора, скольжение 10.6. Индуктивные сопротивления обмоток статора и ротора 10.7. Ток и эквивалентная схема фазы обмотки ротора 10.8. Магнитодвижущие силы оьмоток статора и ротора. Ток обмотки статора 10.9. Электромагнитная мощность и потери в асинхронном двигателе 10.10. Момент, развиваемый двигателем 10.11. Схема замещения асинхронного двигателя 10.12. Механическая характеристика асинхронного двигателя 10.13. Паспортные данные двигателя. Расчет и построение механической характеристики 10.14. Пуск асинхронных двигателей 10.15. Двигатели с улучшенными пусковыми свойствами 10.16. Регулирование частоты вращения 10.17. Тормозные режимы работы 10.18. Энергетические показатели асинхронного двигателя 10.19. Однофазные асинхронные двигатели 10.20. Асинхронный тахогенератор 10.21. Сельсины 10.22. Вращающийся трансформатор 10.23. Понятие о линейном трехфазном асинхронном двигателе

Глава пятая
ПЕРИОДИЧЕСКИЕ НЕСИНУСОИДАЛЬНЫЕ ЭДС, ТОКИ И НАПРЯЖЕНИЯ В ЭЛЕКТРИЧЕСКИХ ЦЕПЯХ

5.7. ПОНЯТИЕ ОБ ЭЛЕКТРИЧЕСКИХ ФИЛЬТРАХ

Как следует из временных диаграмм, приведенных на рис. 5.2, а — в, выпрямленные напряжения имеют пульсации. Данные напряжения содержат как постоянную, так и гармонические составляющие. Однако амплитуды гармонических составляющих достаточно быстро уменьшаются с увеличением номера гармоники. Поэтому при анализе выпрямительных устройств часто можно ограничиться рассмотрением лишь одной основной гармоники. В связи с этим пульсации выпрямленного напряжения оценивают коэффициентом пульсаций kп, который представляет собой отношение амплитуды U1m основной гармоники к постоянной составляющей U0*, т. е.

kп = U1m /U0.

Коэффициент пульсаций зависит от качества выпрямительной схемы. Чем меньше kп, тем форма кривой выпрямленного напряжения ближе к горизонтальной линии. Для однополупериодной схемы выпрямителя kп = 1,57, для двухполупериодной схемы kп = 0,67, для трехфазной схемы kп = 0,057. Наличие пульсаций выпрямленного напряжения ухудшает работу потребителей. С целью их снижения применяются сглаживающие фильтры, которые включаются между выпрямительной схемой и потребителем. Сглаживающим фильтром называется устройство, предназначенное для уменьшения переменной составляющей выпрямленного напряжения. Эффективность действия, сглаживающего фильтра характеризуется коэффициентом сглаживания kc , т. е. отношением коэффициента пульсаций на входе фильтра kп.вх к коэффициенту пульсаций на его выходе kп.вых :

kc = kп.вх /kп.вых.


* Иногда kп рассчитывают как отношение удвоенной амплитуды (размаха пульсаций) к постоянной составляющей.


Рис. 5.11, Схемы электрических сгла-
живающих фильт-
ров: а - емкостный;
в — индуктивный;
в — Г-образный

Рассмотрим некоторые виды сглаживающих фильтров (рис. 5.11, ав).

Емкостный фильтр (конденсатор) по рис. 5.11, а включается параллельно нагрузке. Он шунтирует нагрузку по переменной составляющей тока.

Необходимо, чтобы емкостное сопротивление фильтра для основной гармоники ωо.г пульсаций было много меньше сопротивления нагрузки, т. е.

1 << rп .
ωо.гСф

Тогда параллельное подключение конденсатора к нагрузке снижает переменные составляющие напряжения на ней, тем самым снижается коэффициент пульсаций выпрямленного напряжения.

Индуктивный фильтр (рис. 5.11, б) включается последовательно с нагрузкой и представляет собой большое сопротивление для переменной составляющей тока. Для удовлетворительного сглаживания необходимо выполнить условие

ωо.гLф >> rп .

При таком условии значительно уменьшаются гармонические составляющие тока i(t) и коэффициент пульсаций напряжения на нагрузке существенно снижается. При малом значении rф постоянная составляющая тока I0 на нагрузке изменяется незначительно.

Для лучшего сглаживания на практике используются более сложные фильтры, например Г-образный LC-фильтр (рис. 5.11, в). При создании такого фильтра необходимо, чтобы

ωо.гLф >> rп .   и    1/ωо.гСф << rп .

Влияние элементов этого фильтра аналогично двум вышерассмотренным. При многозвенных Г-образных LC-фильтрах, состоящих из двух, трех и т. д. отдельных фильтров, можно получить высокий коэффициент сглаживания (kс > 100).

Рис. 5.12. Схемы простейших резонансных фильтров

Помимо сглаживающих фильтров в практике используются резонансные фильтры.

Работа резонансных фильтров в электрических цепях несинусоидального тока основана на создании условий для возникновения явлений резонанса тока или напряжения для определенных гармоник, Например, если в общей форме кривой несинусоидального тока на нагрузке необходимо выделить кривую тока k-й гармоники, можно использовать резонансный фильтр рис. 5.12, а, параметры которого Lф и Сф подбираются таким образом, чтобы создать условия резонанса напряжения именно для k-й гармоники. В этом случае сопротивление фильтра для тока k-й гармоники становится значительно меньше, чем для токов других гармоник, что и позволяет выделить на нагрузке ток k-й гармоники. Таким образом, рассматриваемый фильтр позволяет выделить ток определенной частоты. На практике подобные фильтры обеспечивают выделение тока в определенной полосе частот, поэтому они называются полосовыми. И наоборот, если есть необходимость исключить на нагрузке ток k-й гармоники несинусоидального тока, то используется фильтр по рис. 5.12, б. Параметры фильтра Lф и Сф подбираются такими чтобы для k-й гармоники создать условия резонанса тока. В этом случае для тока k-й гармоники проводимость фильтра почти равна нулю и ток этой гармоники на нагрузке или резко уменьшается, или полностью исключается. Такой фильтр называют заградительным или фильтром-пробкой для k-й гармоники.

 [an error occurred while processing this directive]