[an error occurred while processing this directive]
Все справочники Предисловие Введение
Глава I

Глава I. ЭЛЕКТРИЧЕСКИЕ ЦЕПИ ПОСТОЯННОГО ТОКА

1.1. Получение и области применений постоянного тока 1.2. Элементы электротехнических установок электрические цепи и схемы 1.3. Задачи расчета и анализа электрических цепей. Параметры, используемые при расчете и анализе 1.4. Некоторые условные обозначения и классификация электрических цепей. Понятие о двухполюсниках 1.5. Проводниковые и электроизоляционные материалы. Сопротивление проводников и электрическая прочность диэлектриков 1.6. Направления токов, напряжений и э.д.с., единицы их измерения 1.7. Некоторые особенности использования законов Ома и Кирхгофа при расчете и анализе электрических цепей 1.8. Нагревание элементов электрических цепей 1.9. Режимы работы элементов электрических цепей 1.10. Электрические цепи с одним источником энергии и пассивными (резистивными) элементами 1.11. Понятие об источнике тока 1.12. Неразветвленная электрическая цепь с одним источником энергии и активным приемником 1.13. Уравнение баланса мощностей электрических цепей 1.14. Разветвленные электрические схемы с несколькими источниками 1.15. Способы соединения источников электрической энергии 1.16. Нелинейные электрические цепи постоянного тока 1.17. Мостовые электрические цепи 1.18, Понятие об электрическом моделировании
Глава II

Глава II. ЭЛЕКТРИЧЕСКИЕ ЦЕПИ СИНУСОИДАЛЬНОГО ТОКА

2.1. Получение синусоидальной эдс. Основные соотношения 2.2. Действующее и среднее значения синусоидальных тока, эдс и напряжения 2.3 Векторные диаграммы 2.4. Цепь, содержащая резистивный элемент с активным сопротивлением r 2.5. Цепь, содержащая индуктивный элемент с индуктивностью L 2.6. Цепь, содержащая емкостный элемент с емкостью С 2.7. Цепь, содержащая катушку с активным сопротивлением r и индуктивностью L 2.8. Цепь, содержащая резистивный и емкостный элементы 2.9. Последовательное соединение r, L и С 2.10. Активная, реактивная и полная мощности цепи 2.11. Законы Кирхгофа в векторной форме 2.12. Резонанс напряжений 2.13. Разветвление цепи 2.14. Резонанс токов 2.15. Понятие о круговых диаграммах 2.16. Расчет синусоидальных цепей с использованикм комплексных чисел 2.17. Изображение напряжений и токов комплексными числами и векторами на комплексной плоскости 2.18. Комплексные значения полных сопротивлений и проводимостей цепи. Закон Ома в комплексной форме 2.19. Законы Кирхгофа в коиплексной форме 2.20. Выражение мощности в комплексной форме 2.21. Расчет сложных цепей 2.22. Цепи, связанные взаимной индукцией
Глава VI

Глава VI. ЭЛЕКТРОМАГНИТНЫЕ УСТРОЙСТВА
А. МАГНИТНЫЕ ЦЕПИ С ПОСТОЯННОЙ МАГНИТОДВИЖУЩЕЙ СИЛОЙ

6.1. Понятие об электромагнитных устройствах и магнитных цепях 6.2. Основные величины, используемые при расчете и анализе магнитных цепей. Задачи расчета и анализа 6.3. Свойства ферромагнитных материалов 6.4. Допущения и особенности использования основных законов магнитных цепей при расчете и анализе 6.5. Неразветвленные магнитные цепи 6.6. Неразветвленные магнитные цепи с постоянными магнитами 6.7. Разветвленные магнитные цепи 6.8. Основы расчета намагничивающих обмоток 6.9. Тяговое усилие в электромагнитных устройствах

Глава VI. ЭЛЕКТРОМАГНИТНЫЕ УСТРОЙСТВА
Б. МАГНИТНЫЕ ЦЕПИ С ПЕРЕМЕННОЙ МАГНИТОДВИЖУЩЕЙ СИЛОЙ

6.10. Явления, происходящие в магнитных цепях электромагнитных устройств переменного тока, и некоторые их конструктивные особенности 6.11. Формы кривых ЭДС е, магнитного потока Ф, тока i имгновенной мощности ρ идеализированной обмотки 6. 12. Вольт-амперные характеристики идеализированной обмотки 6.13. Эквивалентный ток и векторная диаграмма идеализированной обмотки 6.14. Схема замещения идеализированной обмотки и параметры схемы замещения 6.15. Схема замещения, векторные диаграммы и мощности реальной обмотки с ферромагнитным магнитопроводом 6.16. Определение тока, мощностей, эквивалентных соротивлений и угла сдвига фаз между напряжением и током реальной обмотки 6.17. феррорезонансный стабилизатор напряжения

Глава VI. ЭЛЕКТРОМАГНИТНЫЕ УСТРОЙСТВА
В. МАГНИТНЫЕ ЦЕПИ С ПОСТОЯННОЙ И ПЕРЕМЕННОЙ МАГНИТОДВИЖУЩИМИ СИЛАМИ

6.18. Понятие о дросселях насыщения и магнитных усилителях 6.19. Устройство МУ 6.20. Принцип действия МУ 6.21. Соотношения между токами и характеристика управления МУ 6.22. Коэффициенты усиления МУ 6.23. Обратные связи в МУ 6.24. Смещение в МУ 6.25. Понятие о двухтактных и трехфазных МУ
Глава IX

Глава IX. МАШИНЫ ПОСТОЯННОГО ТОКА

9.1. Назначение и устройство машин постоянного тока 9.2. Краткие сведения об обмотках якорей. Принцип действия машин постоянного тока 9.3. ЭДС якоря и электромагнитный момент машин постоянного тока 9.4. Явление реакции якоря в машинах постоянного тока 9.5. Явление коммутации в машинах постоянного тока 9.6. Классификация генераторов постоянного тока по способу возбуждения. Схемы включения генераторов 9.7. Свойства и характеристики генераторов независимого возбуждения 9.8. Свойства и характеристики генераторов параллельного возбуждения 9.9. Свойства и характеристики генераторов смешанного возбуждения 9.10. Сравнительная оценка и технические данные генераторов постоянного тока 9.11. Классификация двигателей по способу возбуждения. Схемы включения двигателей и положительные направления частоты вращения, момента, токов и других величин 9.12. Зависимости токов от нагрузки двигателей. Соотношения между токами 9.13. Зависимости магнитного потока от тока якоря двигателей 9.14. Зависимости момента от тока якоря. Перегрузочная способность двигателей 9.15. Соотношение между напряжением, ЭДС и падением напряжения в сопротивлениях цепи якоря. Формула тока якоря 9.16. Естественные механические и электромеханические характеристики двигателей 9.17. Пуск двигателей 9.18. Регулирование частоты вращения двигателей 9.19. Тормозные режимы работы двигателей 9.20. Потери мощности и КПД машин постоянного тока 9.21. Сравнительная оценка и технические данные двигателей постоянного тока 9.22. Универсальные коллекторные двигатели 9.23. Микродвигатели постоянного тока
Глава X

Глава X.

10.1. Устройство асинхронного двигателя трехфазного тока 10.2. Вращающееся магнитное поле 10.3. Принцип действия асинхронного двигателя 10.4. ЭДС обмотки статора 10.5. ЭДС, частота тока ротора, скольжение 10.6. Индуктивные сопротивления обмоток статора и ротора 10.7. Ток и эквивалентная схема фазы обмотки ротора 10.8. Магнитодвижущие силы оьмоток статора и ротора. Ток обмотки статора 10.9. Электромагнитная мощность и потери в асинхронном двигателе 10.10. Момент, развиваемый двигателем 10.11. Схема замещения асинхронного двигателя 10.12. Механическая характеристика асинхронного двигателя 10.13. Паспортные данные двигателя. Расчет и построение механической характеристики 10.14. Пуск асинхронных двигателей 10.15. Двигатели с улучшенными пусковыми свойствами 10.16. Регулирование частоты вращения 10.17. Тормозные режимы работы 10.18. Энергетические показатели асинхронного двигателя 10.19. Однофазные асинхронные двигатели 10.20. Асинхронный тахогенератор 10.21. Сельсины 10.22. Вращающийся трансформатор 10.23. Понятие о линейном трехфазном асинхронном двигателе

Глава седьмая
ЭЛЕКТРИЧЕСКИЕ ИЗМЕРЕНИЯ И ПРИБОРЫ

7.4.  ИЗМЕРЕНИЕ ТОКА И НАПРЯЖЕНИЯ

7.4.1. Меры электрических величин. Известно, что существуют, например, мера длины 1 м, мера времени 1 с. Эталоны этих мер хранятся в специальных помещениях с определенной влажностью и температурой. Эти эталоны необходимы для сопоставления их размеров или параметров другим средствам измерения, используемым в промышленности.

С той же целью существуют и меры электрических величин. Мера тока устанавливается с помощью токовых весов, определяющих силу взаимодействия двух последовательно включенных катушек с током. Подвижная катушка прикреплена к коромыслу весов и находится внутри неподвижной. Сила взаимодействия уравновешивается эталонными гирями.

За единицу принят ток в 1 А, при котором весы находятся в равновесии.

Мера ЭДС — ЭДС нормального элемента. Нормальный элемент развивает постоянную ЭДС в течение длительного времени, которая составляет при 20°C 1,0185 - 1,0187 В.

Мерой электрического сопротивления являются образцовые резисторы. Образцовые резисторы выполняются из манганиновой проволоки, намотанной бифилярно на латунный или фарфоровый цилиндр. Они выполняются на значения резисторов от 0,00001 до 100000 Ом.

Меры индуктивности — образцовые катушки, выполненные из медного провода, намотанного на пластмассовый или фарфоровый каркас.

Они выполняются  на значения  индуктивности  от  0,0001  до 1 Гн.
Mера емкости - образцовые конденсаторы с плоскими или цилиндрическими пластинами с воздушной или слюдяной изоляцией, между ними.

7.4.2. Методы измерений. На практикe применяют различные методы измерения электрических величин. Наибольшее распространение в электроизмерительной технике получил метод непосредственной оценки. При использовании этого метода числовое значение измеряемой величины определяют непосредственно по показанию   прибора, шкала которого отрегулирована в единицах измеряемой величины. К подобным измерениям относят определение тока по показанию амперметра, напряжения по показанию вольтметра, мощности по показанию ваттметра, сопротивления по показанию омметра, cos φ по показанию фазометра и т. д.

В некоторых случаях электрическую величину приходится определять косвенно - по данным измерений других электрических величин. Так, значение cos φ находят по измеренным величинам мощности P, напряжения U и тока I, значение сопротивления - по измеренным величинам U и I в т. д. Это - косвенный метод измерения.

В измерительной технике и особенно в автоматических устройствах широко используется метод сравнения. В основе этого метода лежит сравнение измеряемой величины с известной идентичной физической величиной. Из области неэлектрических измерений можно, например, указать известный способ определения при помощи чашечных весов массы (веса) какого-либо предмета путем сравнения его с массой (весом) гирь в момент равновесия.

В электроизмерительной технике различают две разновидности метода сравнения: мостовой и компенсационный. Примером мостового метода является измерение сопротивления при помощи четырехплечной мостовой схемы. Примером компенсационного метода может слу­жить измерение напряжения путем сравнения с известной ЭДС нормального элемента. Методы сравнения отличаются большой точностью, но техника этих измерений сложнее, чем измерений методом непосредственной оценки.

7.4.3. Измерение тока. Для измерения тока в какой-либо цепи последовательно в цепь включают амперметр. В установках постоянного тока для этой цели применяются главным образом приборы магнитоэлектрической системы и реже — приборы электромагнитной системы. В установках переменного тока используются преимущественно амперметры электромагнитной системы. Для уменьшения погрешности измерения необходимо, чтобы сопротивление амперметра (или полное сопротивление амперметра и шунта) было на два порядка меньше сопротивления любого элемента измеряемой цепи.

Для расширения предела измерения амперметра ( в k раз) в цепях постоянного тока служат шунты-резисторы, включаемые параллельно амперметру (рис. 7.10, а).

Рис.    7.10.    Схемы   присоединения    шунта    к    амперметру    (а)    и добавочного резистора к вольтметру (б)

Сопротивление шунта определяется из соотношения

rш(Imax - Iа.н) = rаIа,н,

где Imax — наибольшее значение тока в контролируемой цепи (предел измерения тока амперметром при наличии шунта); Iа,н — предельное (номинальное) значение тока прибора при отсутствии шунта.

Отсюда rш = rа Iа,н .
Imax - Iа,н

Значение тока I в контролируемой цепи при существующей нагрузке определяется из соотношения

I =Imax =rа + rш = k,
IаIа,нrш
где Iа— показание амперметра.

Шкалу амперметра часто градуируют с учетом включенного шунта; тогда значение измеряемого тока I отсчитывается непосредственно по шкале прибора.

В цепях переменного тока для расширения пределов изме­рения амперметров используют трансформаторы тока (см. гл. 8)*.


* Индуктивность катушки амперметра при переменном тоже зависит от значения тока; соотношение токов в катушке амперметра и шунте здесь не остается постоянным. Поэтому шунты в цепях переменного тока не применяются.


7.4.4. Измерение напряжения. Для измерения значения напряжения на каком-либо элементе электрической цепи (генераторе, трансформаторе, нагрузке) к выводам элемента присоединяют вольтметр. Для уменьшения погрешности измерения необходимо, чтобы сопротивление вольтметра (или общее сопротивление вольтметра и добавочного резистора) было на два порядка больше сопротивления любого элемента измеряемой цепи.

Рис. 7.11. Схема компенсатора

Для расширения предела измерения вольтметра (в kраз) в цепях напряжением до 500 В обычно применяют добавочные резисторы, включаемые   последовательно   с обмоткой вольтметра (рис. 7,10, б).

Сопротивление добавочного резистора, rд  определяют из соотношения

rд + rв =Umax .
rвUв,н
где Umaxнаибольшее значение измеряемого напряжения (предел измерения напряжения вольтметром при наличии добавочного резистора); Uв,нпредельное (номинальное) значение напряжения прибора при отсутствии добавочного резистора.

Отсюда

rд = rв Umax - Uв,н .
Uв,н

Значение фактически измеряемого  напряжения определяется  из соотношения

U =Umax =rд + rв = k, U = kUв,
Uв Uв,н rв
где Uв— показание вольтметра.

Шкалу вольтметра градуируют с учетом включенного добавочного резистора.
В цепях переменного тока высокого напряжения для расширения пределов измерения вольтметров применяют трансформаторы напряжения (см. гл. 8).

7.4.5. Компенсационный метод измерения. Для измерения малых значений (от долей до нескольких вольт) ЭДС и напряжений с высокой точностью используется компенсационный метод измерений, основанный на сравнении неизвестной ЭДС Ех или напряжения с известными. Приборы, использующие этот метод измерения, называются компенсаторами. Принципиальная схема компенсатора постоянного тока изображена на рис. 7.11. Компенсатор состоит из двух магазинов резисторов (набор образцовых резисторов со штыревыми контактами) rN и rх источника с ЭДС Е и нормального элемента с ЭДС EN, регулировочного резистора rр .

Измерение производится следующим способом. Переключатель П устанавливают в положение 1, затем с помощью резисторов rр и rN устанавливают такие значения Iр и rN , при которых показания гальванометра равны нулю, а это будет, когда

(7.6)

IрrN = EN.

Далее переключатель П устанавливают в положение 2, изменением сопротивления rх снова добиваются, чтобы гальванометр показывал нуль. Это, очевидно, будет при условии, когда

(7.7)

Iрrх = Eх.

Из отношений (7.6) и (7.7) определяется значение неизвестной ЭДС Ех:
rN =EN ,   откуда   Ех = ENrx .
rxExrN

Как вытекает из изложенного, сравнивается неизвестное значение напряжения U = Iрrх = Ех с известным IprN = EN, причем ток Iр измеряется косвенным путем:

Iр = EN/rN.

Точность измерений зависит в большой степени от чувствительности гальванометра, точности резисторов и стабильности ЭДС нормального элемента.

Существуют компенсаторы переменного тока. Поскольку не существует источника переменного тока с неизменной амплиту­дой подобно нормальному элементу постоянного тока, рабочий ток в компенсаторах переменного тока устанавливается с помощью амперметра, что существенно снижает точность измерений. Компенсаторы переменного тока позволяют измерять не  только  значение  измеряемой  величины,  но   и   его  фазу.

Компенсационный метод измерений используется для проверки приборов высокого класса, а также для измерения тока и сопротивлений резисторов.

 [an error occurred while processing this directive]