[an error occurred while processing this directive]
Все справочники Предисловие Введение
Глава I

Глава I. ЭЛЕКТРИЧЕСКИЕ ЦЕПИ ПОСТОЯННОГО ТОКА

1.1. Получение и области применений постоянного тока 1.2. Элементы электротехнических установок электрические цепи и схемы 1.3. Задачи расчета и анализа электрических цепей. Параметры, используемые при расчете и анализе 1.4. Некоторые условные обозначения и классификация электрических цепей. Понятие о двухполюсниках 1.5. Проводниковые и электроизоляционные материалы. Сопротивление проводников и электрическая прочность диэлектриков 1.6. Направления токов, напряжений и э.д.с., единицы их измерения 1.7. Некоторые особенности использования законов Ома и Кирхгофа при расчете и анализе электрических цепей 1.8. Нагревание элементов электрических цепей 1.9. Режимы работы элементов электрических цепей 1.10. Электрические цепи с одним источником энергии и пассивными (резистивными) элементами 1.11. Понятие об источнике тока 1.12. Неразветвленная электрическая цепь с одним источником энергии и активным приемником 1.13. Уравнение баланса мощностей электрических цепей 1.14. Разветвленные электрические схемы с несколькими источниками 1.15. Способы соединения источников электрической энергии 1.16. Нелинейные электрические цепи постоянного тока 1.17. Мостовые электрические цепи 1.18, Понятие об электрическом моделировании
Глава II

Глава II. ЭЛЕКТРИЧЕСКИЕ ЦЕПИ СИНУСОИДАЛЬНОГО ТОКА

2.1. Получение синусоидальной эдс. Основные соотношения 2.2. Действующее и среднее значения синусоидальных тока, эдс и напряжения 2.3 Векторные диаграммы 2.4. Цепь, содержащая резистивный элемент с активным сопротивлением r 2.5. Цепь, содержащая индуктивный элемент с индуктивностью L 2.6. Цепь, содержащая емкостный элемент с емкостью С 2.7. Цепь, содержащая катушку с активным сопротивлением r и индуктивностью L 2.8. Цепь, содержащая резистивный и емкостный элементы 2.9. Последовательное соединение r, L и С 2.10. Активная, реактивная и полная мощности цепи 2.11. Законы Кирхгофа в векторной форме 2.12. Резонанс напряжений 2.13. Разветвление цепи 2.14. Резонанс токов 2.15. Понятие о круговых диаграммах 2.16. Расчет синусоидальных цепей с использованикм комплексных чисел 2.17. Изображение напряжений и токов комплексными числами и векторами на комплексной плоскости 2.18. Комплексные значения полных сопротивлений и проводимостей цепи. Закон Ома в комплексной форме 2.19. Законы Кирхгофа в коиплексной форме 2.20. Выражение мощности в комплексной форме 2.21. Расчет сложных цепей 2.22. Цепи, связанные взаимной индукцией
Глава VI

Глава VI. ЭЛЕКТРОМАГНИТНЫЕ УСТРОЙСТВА
А. МАГНИТНЫЕ ЦЕПИ С ПОСТОЯННОЙ МАГНИТОДВИЖУЩЕЙ СИЛОЙ

6.1. Понятие об электромагнитных устройствах и магнитных цепях 6.2. Основные величины, используемые при расчете и анализе магнитных цепей. Задачи расчета и анализа 6.3. Свойства ферромагнитных материалов 6.4. Допущения и особенности использования основных законов магнитных цепей при расчете и анализе 6.5. Неразветвленные магнитные цепи 6.6. Неразветвленные магнитные цепи с постоянными магнитами 6.7. Разветвленные магнитные цепи 6.8. Основы расчета намагничивающих обмоток 6.9. Тяговое усилие в электромагнитных устройствах

Глава VI. ЭЛЕКТРОМАГНИТНЫЕ УСТРОЙСТВА
Б. МАГНИТНЫЕ ЦЕПИ С ПЕРЕМЕННОЙ МАГНИТОДВИЖУЩЕЙ СИЛОЙ

6.10. Явления, происходящие в магнитных цепях электромагнитных устройств переменного тока, и некоторые их конструктивные особенности 6.11. Формы кривых ЭДС е, магнитного потока Ф, тока i имгновенной мощности ρ идеализированной обмотки 6. 12. Вольт-амперные характеристики идеализированной обмотки 6.13. Эквивалентный ток и векторная диаграмма идеализированной обмотки 6.14. Схема замещения идеализированной обмотки и параметры схемы замещения 6.15. Схема замещения, векторные диаграммы и мощности реальной обмотки с ферромагнитным магнитопроводом 6.16. Определение тока, мощностей, эквивалентных соротивлений и угла сдвига фаз между напряжением и током реальной обмотки 6.17. феррорезонансный стабилизатор напряжения

Глава VI. ЭЛЕКТРОМАГНИТНЫЕ УСТРОЙСТВА
В. МАГНИТНЫЕ ЦЕПИ С ПОСТОЯННОЙ И ПЕРЕМЕННОЙ МАГНИТОДВИЖУЩИМИ СИЛАМИ

6.18. Понятие о дросселях насыщения и магнитных усилителях 6.19. Устройство МУ 6.20. Принцип действия МУ 6.21. Соотношения между токами и характеристика управления МУ 6.22. Коэффициенты усиления МУ 6.23. Обратные связи в МУ 6.24. Смещение в МУ 6.25. Понятие о двухтактных и трехфазных МУ
Глава IX

Глава IX. МАШИНЫ ПОСТОЯННОГО ТОКА

9.1. Назначение и устройство машин постоянного тока 9.2. Краткие сведения об обмотках якорей. Принцип действия машин постоянного тока 9.3. ЭДС якоря и электромагнитный момент машин постоянного тока 9.4. Явление реакции якоря в машинах постоянного тока 9.5. Явление коммутации в машинах постоянного тока 9.6. Классификация генераторов постоянного тока по способу возбуждения. Схемы включения генераторов 9.7. Свойства и характеристики генераторов независимого возбуждения 9.8. Свойства и характеристики генераторов параллельного возбуждения 9.9. Свойства и характеристики генераторов смешанного возбуждения 9.10. Сравнительная оценка и технические данные генераторов постоянного тока 9.11. Классификация двигателей по способу возбуждения. Схемы включения двигателей и положительные направления частоты вращения, момента, токов и других величин 9.12. Зависимости токов от нагрузки двигателей. Соотношения между токами 9.13. Зависимости магнитного потока от тока якоря двигателей 9.14. Зависимости момента от тока якоря. Перегрузочная способность двигателей 9.15. Соотношение между напряжением, ЭДС и падением напряжения в сопротивлениях цепи якоря. Формула тока якоря 9.16. Естественные механические и электромеханические характеристики двигателей 9.17. Пуск двигателей 9.18. Регулирование частоты вращения двигателей 9.19. Тормозные режимы работы двигателей 9.20. Потери мощности и КПД машин постоянного тока 9.21. Сравнительная оценка и технические данные двигателей постоянного тока 9.22. Универсальные коллекторные двигатели 9.23. Микродвигатели постоянного тока
Глава X

Глава X.

10.1. Устройство асинхронного двигателя трехфазного тока 10.2. Вращающееся магнитное поле 10.3. Принцип действия асинхронного двигателя 10.4. ЭДС обмотки статора 10.5. ЭДС, частота тока ротора, скольжение 10.6. Индуктивные сопротивления обмоток статора и ротора 10.7. Ток и эквивалентная схема фазы обмотки ротора 10.8. Магнитодвижущие силы оьмоток статора и ротора. Ток обмотки статора 10.9. Электромагнитная мощность и потери в асинхронном двигателе 10.10. Момент, развиваемый двигателем 10.11. Схема замещения асинхронного двигателя 10.12. Механическая характеристика асинхронного двигателя 10.13. Паспортные данные двигателя. Расчет и построение механической характеристики 10.14. Пуск асинхронных двигателей 10.15. Двигатели с улучшенными пусковыми свойствами 10.16. Регулирование частоты вращения 10.17. Тормозные режимы работы 10.18. Энергетические показатели асинхронного двигателя 10.19. Однофазные асинхронные двигатели 10.20. Асинхронный тахогенератор 10.21. Сельсины 10.22. Вращающийся трансформатор 10.23. Понятие о линейном трехфазном асинхронном двигателе

Глава первая
ЭЛЕКТРИЧЕСКИЕ ЦЕПИ ПОСТОЯННОГО ТОКА

1.5. ПРОВОДНИКОВЫЕ И ЭЛЕКТРОИЗОЛЯЦИОННЫЕ МАТЕРИАЛЫ. СОПРОТИВЛЕНИЕ ПРОВОДНИКОВ И ЭЛЕКТРИЧЕСКАЯ ПРОЧНОСТЬ ДИЭЛЕКТРИКОВ

Токоведущие части различных элементов электрических цепей изготовляются изпроводниковых материалов, которые бывают твердыми, жидкими и газообразными. Основными проводниковыми материалами являются металлы и их сплавы.

В большинстве случаев токоведущие части (проводники) изготовляются из проволоки круглого или прямоугольного сечения. Такие проводника используются, например, при сооружении линий электропередачи и электрических сетей, нагревательных устройств, обмоток электрических машин, различных электротехнических аппаратов и измерительных приборов.

Если проводник имеет одну и ту же площадь поперечного сечения по всей длине, то его сопротивление, Ом,

(1.1)

r = ρl/S,

где l - длина проводника, м; S — площадь поперечного сечения проводника, м2; ρ — удельное сопротивление материала проводника, Ом • м.

На практике часто пользуются единицами l, S и ρ в 1 м, 1 мм2 и 1 Ом • мм2/м = 1 мкОм • м соответственно.

При использовании тек или других из указанных единиц следует помнить, что в обоих случаях удельные сопротивления не равны и находятся в соотношении 1 Ом • м = 10-6 Ом • мм2/м.

Кроме единицы сопротивления 1 Ом часто используют более крупные единицы: 1 килоом (1 кОм = 103 Ом) и 1 мегаом (1 МОм = 106 Ом).

Единицей проводимости g = 1/r является 1/Ом = 1 См (1 сименс).

Единицы удельной проводимости γ = 1/ρ зависят от единиц удельного сопротивления. Когда единицей удельного сопротивления является 1 Ом • м, единица удельной проводимости будет 1/(Ом • м) = 1 См/м. Когда же единицей сопротивления является 1 Ом • мм2/м = 1 мкОм • м, единица удельной проводимости будет 1 м/(Ом • мм2) = 1 См • м/мм2. Соотношение между указанными единицами проводимости таково: 1 См/м = 1 См • м/м2 = 106 См • м/мм2.

Сопротивление металлических проводников при повышении температуры возрастает. Зависимость сопротивления от температуры выражается следующей формулой:

(1.2)

r2 = r1 [1+ α(t2 - t1)],

где t1 и t2 начальная и конечная температуры. °С; r1 и r2— сопротивления при температурах t1 и t2 , Ом; α— температурный коэффициент сопротивления, °С-1.

Сведения об удельных сопротивлениях и температурных коэффициентах проводниковых материалов приводятся в справочной литературе.

В зависимости от требований, предъявляемых в отношении значений удельного сопротивления, температурного коэффициента сопротивления, допустимой температуры нагревания, механический прочности и ряда других свойств, для изготовления токоведущих частей электротехнических устройств применяются весьма разнообразные металлы и их сплавы.

Так, для многих устройств находят применение материалы с относительно малым удельным сопротивлением. В первую очередь к таким материалам относятся медь и алюминий, имеющие при комнатной температуре удельное сопротивление соответственно 0,0175 и 0,0283 мкОм • м, а также средние температурные коэффициенты 0,0039 и 0,004 °C-1 а диапазоне температyp oт 0 до 100 °С

Из меди и алюминия изготовляют провода электрических сетей и линий электропередачи; медь получила широкое применение для изготовления обмоток электрических машин, различных электрических аппаратов и электроизмерительных приборов, а также контактов коммутационных и других аппаратов, При изготовлении контактов многих аппаратов используются часто серебро и его соединения с другими металлами, а также вольфрам и молибден. Последние два металла вследствие своей тугоплавкости и большой механической прочности нашли широкое применение в электровакуумной технике для изготовления нитей накала. Для коррозионноустойчивых покрытий контактов используется в некоторых случаях золото. Сооружение контактных проводов передвижных приемников электрической энергии (например, электрических кранов) осуществляется в большинстве случаев из стального проката. Постоянные и переменные проволочные резисторы общего назначения, шунтирующие и добавочные резисторы к электроизмерительным приборам и нагревательные приборы изготовляются обычно из различных сплавов, одной из отличительных особенностей которых являются их относительно большие удельные сопротивления. Основным сплавом для шунтирующих и добавочных резисторов является манганин, состоящий из меди, марганца и никеля. Манганин обладает очень малым температурным коэффициентом сопротивления, что необходимо для уменьшения влияния температуры на точность измерений. Константан, состоящий из меди и никеля, используется для изготовления постоянных и переменных резисторов и нагревательных приборов с рабочей температурой до 400 —450 °С. Для нагревательных приборов с рабочей температурой до 1000 - 1500 °С используются хромоникелевые, железохромоалюминиевые сплавы (нихромы и фехрали).

Электроизоляционные материалы (диэлектрики) обладают очень малой электрической проводимостью и служат для изолирования (отделения) токоведущих частей друг от друга, а также от металлоконструкций производственных и электрических машин, аппаратов и приборов. Что необходимо для исключения возможности аварийных режимов (например, коротких замыканий), обеспечения надежности работы установки и безопасности ее эксплуатации.

В настоящее время применяют множество различных электроизоляционных материалов. Так, для изоляции проводов, с помощью которых осуществляется питание электроэнергией приемников в заводских цехах, лабораториях, бытовых помещениях, применяются главным образом резина, бумага, поливинилхлорид.

Голые провода линий электропередачи изолируют от опор опорными или подвесными изоляторами из фарфора или стекла.

Провода обмоток электрических машин и аппаратов изолируют лаковым покрытием и иногда бумагой и хлопчатобумажной тканью, пропитанными различными лаками или компаундами, а также асбестом, стекловолокном, слюдой, эмалями и синтетическими материалами типа «лавсан».

Кроме малой проводимости электроизоляционные материалы должны обладать рядом других свойств, например достаточной электрической и механической прочностью, нагревоустойчивостью, малой гигроскопичностью.

Диэлектрики выполняют свои изолирующие функции, пока напряжение устройства и, следовательно, напряженность электрического поля в диэлектрике данного устройства не превысят определенных значений. Если напряженность окажется больше некоторого критического значения, наступает прибой диэлектрика. Пробой различных (твердых, жидких и газообразных) диэлектриков вызван различными явлениями. Однако во всех случаях проводимость и ток диэлектрика недопустимо возрастают и он теряет свои изолирующие свойства.

Предельная напряженность поля, при которой происходит пробой диэлектрика, называется его электрической прочностью. Электрическая прочность зависит не только от свойств диэлектрика, но также от многих условий, в которых он paботает, например от рода тока, скорости изменения и времени воздействия электрического поля, температуры и влажности.

Сведения об электрической прочности диэлектриков приводятся в справочной литературе. В качестве примера укажем, что при длительном воздействии электрического поля с частотой
f = 50 Гц электрическая прочность воздуха 2 — 3, дерева 2,5 — 5, резины мягкой 15 — 25, трансформаторного масла 16-20, фарфора 15—20 МВ/м

 [an error occurred while processing this directive]