[an error occurred while processing this directive]
Все справочники Предисловие
Глава I

Глава I. Обмотки асинхронных двигателей

§ 6. Классификация § 7. Катушечные обмотки § 8. Связь между числом полюсов и числом шпуль катушечной обмотки § 9. Катушечная обмотка при нечетном числе пар полюсов (р) § 10. Катушечная обмотка с дробным числом пазов на полюс и фазу (q) § 11. Схемы двухплоскостных и трехплоскостных катушечных обмоток § 12. Катушечная обмотка для разъемного статора § 13. Симметричная катушечная обмотка § 14. Катушечная обмотка с "короткими" шпулями § 15. Влияние укорочения шага обмотки на форму кривой индуктиро ванной э. д. с. § 16. Обмотки с укороченным шагом § 17. Трехфазная двухслойная обмотка (так называемая "американская") § 18. Фазная стержневая обмотка ротора § 19. Разрезные обмотки постоянного тока § 20. Способы намотки § 21. Открытые пазы § 22. Открытые и полузакрытые пазы § 23. Американская и европейская системы изоляции обмоток § 24. Изоляция паза
Глава VIII

Глава VIII. Ротор в виде беличьей обмотки (короткозамкнутый ротор)

§ 66. Надежность беличьего ротора § 67. Электродвижущие силы и токи в беличьей обмотке  ротора
Глава X

Глава X. Крутящий момент

§   72. Полное выражение крутящего момента §   73. Величина крутящего момента,   выраженная   в   „синхронных   ваттах"  (PS) §   74. Связь между величиной крутящего момента   и  джоулевыми   потерями в обмотке ротора §   75. Пусковой момент §   76. Зависимость величины крутящего момента от величины   магнитного потока §   77. Влияние напряжения U на величину крутящего момента §   78. Максимальная величина крутящего момента §   79. Влияние величины активного сопротивления цепи ротора   на величину пускового момента §   80. Форма кривой крутящего момента §   81. Связь между Mmax , M и скольжением s §   82. Крутящий момент при малых скольжениях §   83. Зависимость крутящего  момента от   частоты f1тока, питающего двигатель, и омического сопротивления цепи ротора r2 §   84. Кривая начального момента вращения в функции   сопротивления цепи ротора §   85. „Гистерезисный" момент §    86. Местные магнитные потоки и явления „прилипания" §   87. Мощность ротора (Р'2) и скольжение   (s) §   88. Зубцовые поля и влияние их на форму   кривой   крутящего   момента и на шум машины
  1. Зубцовые магнитные поля
  2. Крутящие моменты, создаваемые высшими гармониками
  3. Влияние числа зубцов ротора
  4. Порядок высших зубцовых гармоник
  5. Полюсное деление зубцовых гармоник
  6. Синхронный момент, вызываемый высшими гармониками
  7. Форма кривых крутящих моментов
  8. Шум в асинхронных машинах
  9. Общие замечания относительно выбора числа пазов в коротко-замкнутом роторе
§   89. Влияние скоса пазов ротора на высшие гармоники
Глава XI

Глава XI. Потери и к. п. д.

§ 90. Потери в асинхронном двигателе § 91. Потери холостого хода § 92. Перемагничивание железного цилиндра, вращающегося в постоянном магнитном поле § 93. Перемагничивание железного ротора вращающимся потоком § 94. Потери на гистерезис в статоре асинхронного двигателя § 95. Формула для подсчета потерь на гистерезис § 96. Вихревые токи, появляющиеся   в   железе   ротора   при   его   вращении § 97. Потери на токи Фуко в железе статора § 98. Формулы для подсчета потерь на токи Фуко § 99. Формула для подсчета суммарных потерь   железа § 100. Потери на   гистерезис и вихревые токи в сердечнике статора (индекс s) § 101. Потери на гистерезис и   вихревые   токи   в   зубцах  статора   (индекс z) § 102. Влияние механической обработки на потери  в железе § 103. Потери в железе ротора § 104. Добавочные потери в железе § 105. Потери в болтах § 106. Учет дополнительных потерь § 107. Нагрузочные потери § 108. Вихревые потери в меди статора и ротора § 109. Экспериментальное исследование явления „вытеснения тока" (Опыты К. И. Шенфера и А. И. Москвитина) § 110. Форма кривых токов, текущих в проводах ротора §111. Механические потери § 112. Потери на трение в подшипниках § 113. Потери на трение щеток о контактные кольца § 114. Вентиляционные потери § 115. Коэфициент полезного действия § 116. Кривые к. п. д
Глава XXIV

Глава XXIV. Регулирование скорости   асинхронных  двигателей 
по методу изменения  числа   оборотов  в  минуту вращающегося  поля

§ 215. Скорость вращения магнитного потока § 216. Двигатель с двойной обмоткой в статоре § 217. Переключение обмотки на другое число полюсов § 218. Асинхронный двигатель с двойным ротором
Глава XXV

Глава XXV. Каскадное   соединение   двух  асинхронных   двигателей

§ 219. Регулирование скорости асинхронного двигателя путем   включения в цепь ротора реостата § 220. Каскадное соединение двух асинхронных двигателей § 221. Скорость каскадного агрегата § 222. Распределение мощности между   машинами  каскадного   агрегата § 223. Эквивалентная схема для каскадного соединения § 224. Ток холостого хода в статоре двигателя I § 225. Ток, текущий в статоре двигателя I при   неподвижном агрегате § 226. Коэфициент мощности при каскадных схемах § 227. Явление Гергеса § 228. Явления, происходящие при каскадном   соединении   асинхронных двигателей с однофазным ротором § 229. Практическое значение схемы § 230. Каскадное соединение асинхронных двигателей с   переключением числа полюсов § 231. Обзорная таблица каскадных схем § 232. Двухмоторная схема (для  подъемников) § 233. Регулирование скорости  по методу инверсного поля
Глава XXVI

Глава XXVI. Каскадное соединение асинхронных двигателей с коллекторными машинами

§ 234. Краткая история § 235. Краткий обзор схем соединения § 236. Каскадное соединение асинхронного двигателя с машинами постоянного тока § 237. Схема Кремера с шестифазным конвертором
а)  Устойчивость работы схемы Кремера б)  Схема Кремера с вольтодобавочной машиной
§ 238. Схема Шербиуса с машинами постоянного тока § 239. Различные виды каскадных соединений § 240. Каскадное соединение   асинхронного   двигателя   с   коллекторным при   непосредственном    механическом   соединении   (схема   Кремера) § 241. Мощность каскадного агрегата по схеме Кремера § 242. Влияние характера возбуждения вспомогательного   двигателя   на работу агрегата § 243. Регулирование скорости при каскадном соединении асинхронного двигателя с шунтовым коллекторным двигателем § 244. Описание схемы Шербиуса § 245. Действие схемы § 246. „Энергетическая" диаграмма схемы Кремера § 247. „Энергетическая" диаграмма схемы Шербиуса § 248. Регулирование скорости ниже синхронной  при   схеме Шербиуса § 249. Сверхсинхронная скорость § 250. Переход через синхронизм § 251. Схема каскадного соединения,   при   которой   возможен   плавныйпереход главного двигателя через синхронную скорость
Глава XXVIII

Глава XXVIII. Компенсированные асинхронные двигатели

§ 256. Двигатель Гейланда (Heyland) завода Бергмана (Bergmann)
Глава XXXVIII

Глава XXXVIII. Примерные  расчеты

§ 341. Задание § 342. Задание
Обозначения

ГЛАВА XXIII
СИСТЕМЫ ОДНОФАЗНЫХ АСИНХРОННЫХ ДВИГАТЕЛЕЙ

§ 214. Конденсаторные асинхронные двигатели.

Конденсаторный двигатель представляет собой двухфазный или трехфазный асинхронный двигатель с параллельно включенными емкостями, питаемый от однофазной сети.

Один из таких двигателей был описан   выше (фиг. 244).

Фиг. 249. Однофазный "конденсаторный" двигатель. Фиг. 250.  Однофазные "конденсаторные" двигатели.

На фиг. 249—250 представлены другие возможные и применяемые на практике  схемы.

На фиг. 249 показан двигатель с двухфазным статором (фазы А и В) и короткозамкнутым   ротором R.

Как видно из этой фигуры, в цепь вспомогательной фазы статора включается конденсатор С. В обеих фазах статора текут токи

ÍА и ÍВ.

Благодаря наличию емкости С можно добиться того, чтобы токи IА и IВ были друг относительно друга смещены по фазе на угол, равный 90°. На фиг. 249 справа дана векторная диаграмма, поясняющая процессы, происходящие в конденсаторном двигателе. Как видно из этой диаграммы, ток, притекающий к статору двигателя из сети, является геометрической суммой:

Í = ÍА + ÍВ.

Подбирая соответственным образом емкость С и самоиндукцию обмоток, можно добиться того, что токи ÍА и ÍВ будут смещены по фазе друг относительно друга на 90°, как это и показано на фиг. 249.

Ток ÍА отстает по фазе на )φА относительно напряжения сети UА = U, а ток IВ отстает по фазе на угол φB относительно напряжения на зажимах   UB вспомогательной   обмотки.

Вектор напряжения UB смещен по фазе на угол 90° относительно вектора напряжения   сети   ÚА.

На фиг. 249 вектор  конденсаторного   напряжения ÚС     составляет прямой угол с вектором  тока ÍB.

На основании векторной диаграммы можно доказать, что полная компенсация сдвига фаз, т. е. работа двигателя при φ = 0, наступает, когда кажущаяся мощность, поглощаемая двигателем из сети, приблизительно равна кажущейся мощности конденсатора 1.


1 См. работы В. С. Кулебакина в области теории конденсаторных двигателей.


На фиг. 250 показаны схемы соединений конденсаторных двигателей в случае трехфазных обмоток в статоре.

Опыт показывает, что конденсатор, приключенный параллельно обмоткам статора однородного двигателя, улучшает его пусковые качества.

В последнее время однофазные конденсаторные двигатели небольшой мощности начинают находить все большее и большее распространение (при электрификации сельского хозяйства и для бытового обслуживания).

 [an error occurred while processing this directive]